K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 2 2019

ez

Xét \((a^2+b^2+c^2)-\left(a+b+c\right)\)

\(=\left(a^2-a\right)+\left(b^2-b\right)+\left(c^2-c\right)\)

Ta có \(\left(a^2-a\right)=\left(a-1\right)a⋮2\)(vì tích hai số nguyên liên tiếp)

\(\Rightarrow\left(a^2-a\right)⋮2\)

Chứng minh tương tự ta có :

\(\left(b^2-b\right)⋮2;\left(c^2-c\right)⋮2\)

\(\Rightarrow\left(a^2-a\right)+\left(b^2-b\right)+\left(c^2-c\right)⋮2\)

\(\Rightarrow\left(a^2+b^2+c^2\right)-\left(a+b+c\right)⋮2\)

Vì \(a^2+b^2+c^2⋮2\Rightarrow a+b+c⋮2\)

24 tháng 2 2019

         a+b+c=(a2+b2+c2)-(a+b+c)

Ta có: (a2-a)=a.(a-1) chia hết 2

           (b2-b)=b.(b-1) chia hết 2

           (c2-c)=c.(c-1) chia hết 2

mà a+b+c=(a2+b2+c2)-(a+b+c)

               =(a2-a)(b2-b)(c2-c) 

=> a+b+c chia hết 2.

b)

P là số nguyên tố lớn hơn 3

=> p không chia hết cho 3

=> p chia 3 dư 1 hoặc p chia 3 dư 2

=> p=3K+1 hoặc p=3K+2       (K\(\in\)\(ℕ^∗\))

+ p=3K+1

(p-1).(p+1)=(3K+1-1).(3K+1+1)=3K.(3K+2) chia hết cho 3 (1)

+p=3K+2

(p-1).(p+1)=(3k+2-1).(3k+2+1)=(3k+1).(3k+3)=(3k+1).3.(k+1) chia hết cho 3 (2)

Từ (1) và (2) suy ra p là số nguyên tố lớn hơn 3 thì chia hết cho 3 (a)

Ta có: p nguyên tố lớn hơn 3

=> P là số lẻ

p-1 là số chẵn

p+1 là số chẵn

=> (p-1).(p+1) chia hết cho 8 (b) 

Từ (A) và (b) suy ra p là số ntố lớn hơn 3 thì (p-1).(p+1) chia hết cho 24

25 tháng 10 2017

a) A = 2n +1 => A là số lẻ \(\Rightarrow⋮̸\)( không chia hết ) 2

b) A có thể chia hết cho 5 , A có thể không chia hết cho 5

25 tháng 10 2017

Ghi giải ra luôn bạn!

4 tháng 11 2018

sao ko ai lam the

1 tháng 11 2018

\(x+2⋮x^2\Rightarrow x+2⋮x.x\Rightarrow2⋮x\left(x+1\right)\Rightarrow x\in\left\{\mp1\right\}\)

1 tháng 11 2018

shitbo thiếu trường hợp rồi nha bạn!

Để x + 2 chia hết cho x2 thì x + 2 chia hết cho x. Hay \(\frac{x+2}{x}\) nguyên.

Ta có: \(\frac{x+2}{x}=1+\frac{2}{x}\). Để \(\frac{x+2}{x}\) nguyên thì \(\frac{2}{x}\) nguyên hay \(x\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

Vậy \(x=\left\{\pm1;\pm2\right\}\)

1 tháng 11 2018

Ta có:

x+2 chia hết cho x.x

=>2 chia hết cho x

=>xE{+-1;+-2}

1 tháng 11 2018

MK nhầm phải là

2-x chia hết cho x nha

22 tháng 11 2017

Chào bạn!

Ta sẽ chứng minh bài toán này theo phương pháp phản chứng

Giả sử \(\left(a;c\right)=m\)\(V\text{ới}\)\(m\in N\)\(m\ne1\)

Khi đó \(\hept{\begin{cases}a=k_1m\\c=k_2m\end{cases}}\)

Thay vào \(ab+cd=p\)ta có : \(k_1mb+k_2md=p\Leftrightarrow m\left(k_1b+k_2d\right)=p\)

Khi đó p là hợp số ( Mâu thuẫn với đề bài)

Vậy \(\left(a;c\right)=1\)(đpcm)

7 tháng 11 2021

khó quá

mình cũng đang hỏi câu đấy đây

 

Vì abcabc = 1001 x abc

Mà 1001 lại chia hết cho 11

=> abcabc chia hết cho 11

Hội con 🐄 chúc bạn học tốt!!!