a) Giải phương trình nghiệm nguyên: \(3x^2+5y^2=255\)
b) Cho a, b, c là ba số nguyên dương thỏa mãn abc = 1.CMR:
\(\frac{1}{a^2+2b^2+3}+\frac{1}{b^2+2c^2+3}+\frac{1}{c^2+2a^2+3}\le\frac{1}{2}\)
Trích đề thi chọn học sinh giỏi lớp 9 huyện tam dương,tỉnh vĩnh phúc. Năm học 2017 - 2018.
a)
Ta thấy \(3x^2⋮5\Rightarrow x⋮5\Leftrightarrow x=5a\)
Thay vào pt đầu ta có:\(15a^2+y^2=51\\ \Rightarrow y=3b\)
Hay\(5a^2+3b^2=17\)
vì x,y nguyên nên a,b cũng nguyên
như vậy tìm được a=1,b=2
nên x=5,y=6
\(\xi\frac{1}{a^2+2b^2+3}=\xi\frac{1}{\left(a^2+1\right)+\left(b^2+1\right)+1}\le\frac{1}{2}\xi\frac{1}{ab+b+1}=\frac{1}{2}\)|(do abc=1)