K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 10 2021

\(7x+6\sqrt{x+5}=x^2+30\left(đk:x\ge-5\right)\)

\(\Leftrightarrow6\sqrt{x+5}=x^2-7x+30\)

Ta thấy 2 vế đều dương nên bình phương lên ta được:

\(36x+180=x^4+49x^2+900-14x^3+60x^2-420x\)

\(\Leftrightarrow x^4-14x^3+109x^2-456x+720=0\)

\(\Leftrightarrow x^3\left(x-4\right)-10x^2\left(x-4\right)+69x\left(x-4\right)-180\left(x-4\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(x^3-10x^2+69x-180\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left[x^2\left(x-4\right)-6x\left(x-4\right)+45\left(x-4\right)\right]=0\)

\(\Leftrightarrow\left(x-4\right)^2\left(x^2-6x+45\right)=0\)

\(\Leftrightarrow x=4\left(tm\right)\) (do \(x^2-6x+45=\left(x^2-6x+9\right)+36=\left(x-3\right)^2+36\ge36>0\))

3 tháng 9 2020

\(ĐKXĐ:x\ge-5\)

Ta có : \(x^2-7x=6\sqrt{x+5}-30\)

\(\Leftrightarrow x^2-7x+30-6\sqrt{x+5}=0\)

\(\Leftrightarrow\left(x^2-8x+16\right)+\left(x+5-6\sqrt{x+5}+9\right)=0\)

\(\Leftrightarrow\left(x-4\right)^2+\left(\sqrt{x+5}-3\right)^2=0\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x-4\right)^2=0\\\left(\sqrt{x+5}-3\right)^2=0\end{cases}\Leftrightarrow}x=4\) ( Thỏa mãn ĐKXĐ )

Vậy phương trình có nghiệm duy nhất \(x=4\)

7 tháng 10 2024

cho mình hỏi dương 9 ở dòng 5 sao có v ạ

29 tháng 3 2022

1.   3x( x - 2 ) - ( x - 2 ) = 0

<=> ( x-2).(3x-1)  = 0 => x = 2 hoặc x = \(\dfrac{1}{3}\)

2.    x( x-1 ) ( x2 + x + 1 ) - 4( x - 1 )

<=> ( x - 1 ).( x (x^2 + x + 1 ) - 4 ) = 0

(phần này tui giải được x = 1 thôi còn bên kia giải ko ra nha )

\(\left\{{}\begin{matrix}\sqrt{5}x-2y=7\\\sqrt{5}x-5y=10\end{matrix}\right.\)<=> \(\left\{{}\begin{matrix}y=-1\\x=\sqrt{5}\end{matrix}\right.\)

29 tháng 3 2022

\(1. 3x^2 - 7x +2=0\)

=>\(Δ=(-7)^2 - 4.3.2\)

        \(= 49-24 = 25\)

Vì 25>0 suy ra phương trình có 2 nghiệm phân biệt:

\(x_1\)=\(\dfrac{-\left(-7\right)+\sqrt{25}}{2.3}=\dfrac{7+5}{6}=2\)

\(x_2\)=\(\dfrac{-\left(-7\right)-\sqrt{25}}{2.3}=\dfrac{7-5}{6}=\dfrac{1}{3}\)

 

  

HQ
Hà Quang Minh
Giáo viên
23 tháng 9 2023

a) \(\sqrt {2 - x}  + 2x = 3\)\( \Leftrightarrow \sqrt {2 - x}  = 3 - 2x\)  (1)

Ta có: \(3 - 2x \ge 0 \Leftrightarrow x \le \frac{3}{2}\)

Bình phương hai vế của (1) ta được:

\(\begin{array}{l}2 - x = {\left( {3 - 2x} \right)^2}\\ \Rightarrow 2 - x = 9 - 12x + 4{x^2}\\ \Leftrightarrow 4{x^2} - 11x + 7 = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 1\left( {TM} \right)\\x = \frac{7}{4}\left( {KTM} \right)\end{array} \right.\end{array}\)

Vậy tập nghiệm của phương trình là \(S = \left\{ 1 \right\}\)

b) \(\sqrt { - {x^2} + 7x - 6}  + x = 4\)\( \Leftrightarrow \sqrt { - {x^2} + 7x - 6}  = 4 - x\)  (2)

Ta có: \(4 - x \ge 0 \Leftrightarrow x \le 4\)

Bình phương hai vế của (2) ta được:

\(\begin{array}{l} - {x^2} + 7x - 6 = {\left( {4 - x} \right)^2}\\ \Leftrightarrow  - {x^2} + 7x - 6 = 16 - 8x + {x^2}\\ \Leftrightarrow 2{x^2} - 15x + 22 = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 2\left( {TM} \right)\\x = \frac{{11}}{2}\left( {KTM} \right)\end{array} \right.\end{array}\)

Vậy tập nghiệm của phương trình là \(S = \left\{ 2 \right\}\)

20 tháng 9 2015

b) ĐKXĐ: \(x\ge-5\) PT \(\Leftrightarrow x^2-7x+30=6\sqrt{x+5}\). Vì vế trái lớn hơn 0 (bạn tự chứng minh) nên bình phương 2 vế ta có;

\(x^4+49x^2+900-14x^3+60x^2-420x=36x+180\Leftrightarrow x^4-14x^3+109x^2-456x+720=0\)

\(\Leftrightarrow\left(x-4\right)\left(x^3-10x^2+69x-180\right)=0\Leftrightarrow\left(x-4\right)^2\left(x^2-6x+45\right)=0\)

Vì x2-6x+45 = (x-3)2+36 >0 nên (x-4)2=0  <=> x=4 (T/m). Vậy phương trình có nghiệm duy nhất x=4

 

a) \(x^3-4x^2-5x+6=\sqrt[3]{7x^2+9x-4}\)

\(\Leftrightarrow-7x^2-9x+4+x^3+3x^2+4x+2=\sqrt[3]{7x^2+9x-4}\)

\(\Leftrightarrow-\left(7x^2+9x-4\right)+\left(x+1\right)^3+x+1=\sqrt[3]{7x^2+9x-4}\) (*)

Đặt \(\sqrt[3]{7x^2+9x-4}=a;x+1=b\)

Khi đó (*) \(\Leftrightarrow-a^3+b^3+b=a\)

\(\Leftrightarrow\left(b-a\right).\left(b^2+ab+a^2+1\right)=0\)

\(\Leftrightarrow b=a\)

Hay \(x+1=\sqrt[3]{7x^2+9x-4}\)

\(\Leftrightarrow\left(x+1\right)^3=7x^2+9x-4\)

\(\Leftrightarrow x^3-4x^2-6x+5=0\)

\(\Leftrightarrow x^3-4x^2-5x-x+5=0\)

\(\Leftrightarrow\left(x-5\right)\left(x^2+x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=\dfrac{-1\pm\sqrt{5}}{2}\end{matrix}\right.\)

7 tháng 8 2018

Hãy tích cho tui đi

vì câu này dễ mặc dù tui ko biết làm 

Yên tâm khi bạn tích cho tui

Tui sẽ ko tích lại bạn đâu

THANKS

7 tháng 8 2018

( x +1 ) ( x + 4 ) = 5 căn ( x^2 + 5x +28 ) (1) 
= ( x + 1 ) ( x + 4 ) = 5 căn [ (x^2 + 5x + 4) + 24 ] 
= ( x + 1 ) ( x + 4 ) = 5 căn [ ( x + 1 ) ( x + 4 ) + 24 ] 
Đặt a = ( x + 1 ) ( x + 4 ) 
(1) <=> a = 5 căn ( a + 24 ) 
<=> a^2 = 25 ( a + 24 ) 
<=> a^2 - 25a - 600 = 0 
<=> a1 = 40 
a2 = -15 

với a = 40 ta có: 
( x + 1 ) ( x + 4 ) = 40 
<=> x^2 + 5x + 4 = 40 
<=> x^2 + 5x - 36 = 0 
<=> x = 4 và x = - 9 

với a = -15, ta có: 
( x + 1 ) ( x + 4 ) = -15 
<=> x^2 + 5x + 4 = -15 
<=> x^2 + 5x + 19 = 0 
delta < 0 => pt vô nghiệm 

Vậy s = { -9; 4}