Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(ĐKXĐ:x\ge-5\)
Ta có : \(x^2-7x=6\sqrt{x+5}-30\)
\(\Leftrightarrow x^2-7x+30-6\sqrt{x+5}=0\)
\(\Leftrightarrow\left(x^2-8x+16\right)+\left(x+5-6\sqrt{x+5}+9\right)=0\)
\(\Leftrightarrow\left(x-4\right)^2+\left(\sqrt{x+5}-3\right)^2=0\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x-4\right)^2=0\\\left(\sqrt{x+5}-3\right)^2=0\end{cases}\Leftrightarrow}x=4\) ( Thỏa mãn ĐKXĐ )
Vậy phương trình có nghiệm duy nhất \(x=4\)
b) ĐKXĐ: \(x\ge-5\) PT \(\Leftrightarrow x^2-7x+30=6\sqrt{x+5}\). Vì vế trái lớn hơn 0 (bạn tự chứng minh) nên bình phương 2 vế ta có;
\(x^4+49x^2+900-14x^3+60x^2-420x=36x+180\Leftrightarrow x^4-14x^3+109x^2-456x+720=0\)
\(\Leftrightarrow\left(x-4\right)\left(x^3-10x^2+69x-180\right)=0\Leftrightarrow\left(x-4\right)^2\left(x^2-6x+45\right)=0\)
Vì x2-6x+45 = (x-3)2+36 >0 nên (x-4)2=0 <=> x=4 (T/m). Vậy phương trình có nghiệm duy nhất x=4
Hãy tích cho tui đi
vì câu này dễ mặc dù tui ko biết làm
Yên tâm khi bạn tích cho tui
Tui sẽ ko tích lại bạn đâu
THANKS
( x +1 ) ( x + 4 ) = 5 căn ( x^2 + 5x +28 ) (1)
= ( x + 1 ) ( x + 4 ) = 5 căn [ (x^2 + 5x + 4) + 24 ]
= ( x + 1 ) ( x + 4 ) = 5 căn [ ( x + 1 ) ( x + 4 ) + 24 ]
Đặt a = ( x + 1 ) ( x + 4 )
(1) <=> a = 5 căn ( a + 24 )
<=> a^2 = 25 ( a + 24 )
<=> a^2 - 25a - 600 = 0
<=> a1 = 40
a2 = -15
với a = 40 ta có:
( x + 1 ) ( x + 4 ) = 40
<=> x^2 + 5x + 4 = 40
<=> x^2 + 5x - 36 = 0
<=> x = 4 và x = - 9
với a = -15, ta có:
( x + 1 ) ( x + 4 ) = -15
<=> x^2 + 5x + 4 = -15
<=> x^2 + 5x + 19 = 0
delta < 0 => pt vô nghiệm
Vậy s = { -9; 4}
\(x^2-7=6\sqrt{x+5}-30\)
\(\Leftrightarrow x^2-7+30=6\sqrt{x+5}-30+30\)( thêm 30 vào cả 2 vế )
\(\Leftrightarrow x^2+23=6\sqrt{x+5}\)
\(\Leftrightarrow x^4+46x^2+529=36x+180\)
\(\Leftrightarrow x^4-46x^2-36x+349=0\)( vô nghiệm )
a,\(x^2-7x+\sqrt{x^2-7x+8}=12\)
ĐKXĐ: .....
Đặt \(x^2-7x=t\)
Phương trình trở thành
\(t+\sqrt{t+8}=12\)
\(\Leftrightarrow\sqrt{t+8}=12-t\)
\(\Leftrightarrow t+8=\left(12-t\right)^2\)
\(\Leftrightarrow t+8=144-24t+t^2\)
\(\Leftrightarrow t^2-25t+136=0\)
\(\Leftrightarrow\left(t-17\right)\left(t-8\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}t-17=0\\t-8=0\end{cases}\Leftrightarrow\orbr{\begin{cases}t=17\\t=8\end{cases}}}\)
tại t = 17 , ta có
\(x^2-7x=17\Leftrightarrow x^2-7x-17=0\)
\(\Leftrightarrow.......\)
Tại t = 8 ta có
\(x^2-7x=8\Leftrightarrow x^2-7x-8=0\)
\(\Leftrightarrow\left(x-8\right)\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-8=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=8\\x=-1\end{cases}}}\)
b, \(x^2+4x+5=2\sqrt{2x+3}\)
mik ko bt :)
a,đkxđ:\(x^2-7x+8\ge0\Leftrightarrow x^2-2\cdot\frac{7}{2}x+\frac{49}{4}-\frac{17}{4}\ge0\Leftrightarrow\left(x-\frac{7}{2}\right)^2\ge\frac{17}{4}\Leftrightarrow\hept{\begin{cases}x-\frac{7}{2}\ge\frac{\sqrt{17}}{2}\approx2,06\\x-\frac{7}{2}\le-\frac{\sqrt{17}}{2}\approx-2,06\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge5,56\\x\le1,44\end{cases}}\)
\(\Leftrightarrow\left(x^2-7x+8\right)+\sqrt{x^2-7x+8}=12+8=20\)
\(\Leftrightarrow4\left(x^2-7x+8\right)+4\sqrt{x^2-7x+8}+1=20\cdot4+1=81\)
\(\Leftrightarrow\left(2\sqrt{x^2-7x+8}+1\right)^2=81\)
\(\Leftrightarrow2\sqrt{x^2-7x+8}+1=\pm9\)
Mà vế trái >0 nên \(2\sqrt{x^2-7x+8}+1=9\)
\(\Leftrightarrow\sqrt{x^2-7x+8}=\frac{9-1}{2}=4\)
\(\Leftrightarrow x^2-7x+8=16\)
\(\Leftrightarrow x^2-7x-8=0\Leftrightarrow\left(x-8\right)\left(x+1\right)=0\Leftrightarrow\orbr{\begin{cases}x=8\\x=-1\end{cases}}\)
bình phương 2 vế ?
a, \(\sqrt{x-2}+\sqrt{x-3}=5\left(ĐK:x\ge3\right)\)
\(< =>x+\sqrt{\left(x-2\right)\left(x-3\right)}=15\)
\(< =>\left(x-2\right)\left(x-3\right)=\left(15-x\right)\left(15-x\right)\)
\(< =>x^2-5x+6=x^2-30x+225\)
\(< =>25x-219=0\)
\(< =>x=\frac{219}{25}\)