K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 2 2019

Có: (m-n)(m+n) = m^2 + mn - mn - n^2

                          = m^2 - n^2

24 tháng 7 2015

Ta có \(m^2\ge0\) và \(n^2\ge0\)

Do đó \(m^2+n^2\ge0\)

Suy ra \(m^2+n^2+2\ge2\) (điều phải chứng minh).

24 tháng 7 2015

vì m2 > 0 với mọi m

n2 > 0 với mọi n

=>m2+n2 > 0

do đó  m2+ n2 +2 > 0+2=2

 

24 tháng 11 2021

Cho m+n=1 và m.n khác 0.

Chứng minh m/(n^3 -1) + n/(m^3 - 1) = 2(mn - 2)/(m^2 . n^2  + 3)

2 tháng 8 2018

Làm lại : Ta có BĐT : \(\left(a-b\right)^2\text{≥}0\)\(ab\)

\(a^2+b^2\text{≥}2ab\)

Áp dụng vào bài toán , ta có :

\(m^2+1\text{≥}2\sqrt{m^2}=2m\)

\(n^2+1\text{≥}2\sqrt{n^2}=2n\)

\(m^2+n^2+2\text{≥}2\left(m+n\right)\)

17 tháng 11 2015

=> p^2 = (m-1)(m+n). => m+n thuộc ước dương của p^2 . mà p là số nguyên tố => m+n thuộc p,1,p^2. mà m+n> m-1=> m+n = p^2 => m-1 =1 => m=2=> p^2 = n+2(đpcm)

14 tháng 4 2016

tại sao lại m+n lại là ước dương

26 tháng 5 2016

ta có \(m^2-2m+1+n^2-2n+1=\left(m-1\right)^2+\left(n-1\right)^2\ge0\Rightarrow DPCM\)

26 tháng 5 2016

áp dụng BDT cô-si , ta có :

\(m^2+1\ge2\sqrt{m^2.1}=>m^2+1\ge2m\)

\(n^2+1\ge2\sqrt{n^2.1}=>n^2+1\ge2n\)

\(\Rightarrow m^2+1+n^2+1\ge2m+2n\)

\(\Rightarrow m^2+n^2+2\ge2\left(m+n\right)\)

dấu "=" xảy ra khi m=n =1

=> đpcm

26 tháng 5 2016

bảo nam trần sai rồi