K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 5 2016

áp dụng BDT cô-si , ta có :

\(m^2+1\ge2\sqrt{m^2.1}=>m^2+1\ge2m\)

\(n^2+1\ge2\sqrt{n^2.1}=>n^2+1\ge2n\)

\(\Rightarrow m^2+1+n^2+1\ge2m+2n\)

\(\Rightarrow m^2+n^2+2\ge2\left(m+n\right)\)

dấu "=" xảy ra khi m=n =1

=> đpcm

26 tháng 5 2016

bảo nam trần sai rồi

26 tháng 5 2016

ta có \(m^2-2m+1+n^2-2n+1=\left(m-1\right)^2+\left(n-1\right)^2\ge0\Rightarrow DPCM\)

24 tháng 7 2015

Ta có \(m^2\ge0\) và \(n^2\ge0\)

Do đó \(m^2+n^2\ge0\)

Suy ra \(m^2+n^2+2\ge2\) (điều phải chứng minh).

24 tháng 7 2015

vì m2 > 0 với mọi m

n2 > 0 với mọi n

=>m2+n2 > 0

do đó  m2+ n2 +2 > 0+2=2

 

20 tháng 6 2015

a2 = (m2 + n2) = m4 + 2m2.n2 + n4

b2 = (m2 - n2)2   = m4 - 2m2.n2 + n4 

c2 = (2mn)2 = 4m2.n2 

Nhận xét:  a2 - b2 = c2 => a2 = b2 + c2

Theo ĐL pi - ta - go đảo => a; b; c là độ dài 3 cạnh của 1 tam giác vuông

NV
23 tháng 3 2019

Câu 1: Dùng biến đổi tương đương:

a/ \(3\left(m+1\right)+m< 4\left(2+m\right)\)

\(\Leftrightarrow3m+3+m< 8+4m\)

\(\Leftrightarrow4m+3< 8+4m\)

\(\Leftrightarrow3< 8\) (đúng), vậy BĐT ban đầu là đúng

b/ \(\left(m-2\right)^2>m\left(m-4\right)\)

\(\Leftrightarrow m^2-4m+4>m^2-4m\)

\(\Leftrightarrow4>0\) (đúng), vậy BĐT ban đầu đúng

Câu 2:

a/ \(b\left(b+a\right)\ge ab\)

\(\Leftrightarrow b^2+ab\ge ab\)

\(\Leftrightarrow b^2\ge0\) (luôn đúng), vậy BĐT ban đầu đúng

b/ \(a^2-ab+b^2\ge ab\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)

NV
23 tháng 3 2019

Câu 3:

a/ \(10a^2-5a+1\ge a^2+a\)

\(\Leftrightarrow9a^2-6a+1\ge0\)

\(\Leftrightarrow\left(3a-1\right)^2\ge0\) (luôn đúng)

b/ \(a^2-a\le50a^2-15a+1\)

\(\Leftrightarrow49a^2-14a+1\ge0\)

\(\Leftrightarrow\left(7a-1\right)^2\ge0\) (luôn đúng)

Câu 4:

Ta có: \(\frac{1}{\left(n+1\right)\sqrt{n}}=\frac{\sqrt{n}}{n\left(n+1\right)}=\sqrt{n}\left(\frac{1}{n}-\frac{1}{n+1}\right)=\left(1+\frac{\sqrt{n}}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)< 2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

\(\Rightarrow VT=\frac{1}{2\sqrt{1}}+\frac{1}{3\sqrt{2}}+...+\frac{1}{\left(n+1\right)\sqrt{n}}\)

\(\Rightarrow VT< 2\left(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

\(\Rightarrow VT< 2\left(1-\frac{1}{\sqrt{n+1}}\right)< 2\)

1 tháng 4 2018

ta có a(a + 2) = a2 + 2a < a+ 2a + 1 = (a + 1)2

AH
Akai Haruma
Giáo viên
3 tháng 4 2020

Lời giải:

Áp dụng BĐT Cô-si cho các số không âm ta có:

$\frac{a^2}{2}+8b^2\geq 2\sqrt{4a^2b^2}=2|2ab|\geq 4ab$

$\frac{a^2}{2}+8c^2\geq 2|2ac|\geq 4ac$

$2b^2+2c^2\geq 2\sqrt{4b^2c^2}=2|2bc|\geq 4bc$

Cộng theo vế các BĐT trên:

$\Rightarrow a^2+10b^2+10c^2\geq 4(ab+bc+ac)=4$ (đpcm)

Dấu "=" xảy ra khi \(a=4b=4c=\pm \frac{4}{3}\)

3 tháng 5 2015

Xét hiệu:  2m2 + 2n2 + 1 - 2m - 2n = 2.(m2 - m + 1/4) + 2.(n2 - n +1/4) = \(=2.\left(m-\frac{1}{2}\right)^2+2.\left(n-\frac{1}{2}\right)^2\ge0\) với mọi m; n

=> ĐPCM