Bài 1: Cho các số thực dương a,b,c.CMR:
\(\left(a^2+4\right)\left(b^2+4\right)\left(c^2+4\right)\ge36\left(ab+bc+ca\right)\)
Bài 2: Cho 3 số thực a, b, c.CMR:
\(a^2+b^2+c^2+a^2b^2c^2\ge2\left(ab+bc+ca\right)\)
Giúp t vs!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trước hết theo BĐT Schur bậc 3 ta có:
\(\left(a+b+c\right)\left(a^2+b^2+c^2\right)+9abc\ge2\left(a+b+c\right)\left(ab+bc+ca\right)\)
\(\Leftrightarrow a^2+b^2+c^2+3abc\ge2\left(ab+bc+ca\right)\) (do \(a+b+c=3\)) (1)
Đặt vế trái BĐT cần chứng minh là P, ta có:
\(P=\dfrac{\left(a^2+abc\right)^2}{a^2b^2+2abc^2}+\dfrac{\left(b^2+abc\right)^2}{b^2c^2+2a^2bc}+\dfrac{\left(c^2+abc\right)^2}{a^2c^2+2ab^2c}\)
\(\Rightarrow P\ge\dfrac{\left(a^2+b^2+c^2+3abc\right)^2}{a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)}=\dfrac{\left(a^2+b^2+c^2+3abc\right)^2}{\left(ab+bc+ca\right)^2}\)
Áp dụng (1):
\(\Rightarrow P\ge\dfrac{\left[2\left(ab+bc+ca\right)\right]^2}{\left(ab+bc+ca\right)^2}=4\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=1\)
Anh giúp em câu này ạ, câu này hơi khó anh ạ, làm chắc cũng lâu, có gì anh để mai cũng được ạ!
https://hoc24.vn/cau-hoi/cho-hinh-chop-sabcd-co-day-la-hinh-binh-hanh-m-va-p-la-hai-diem-lan-luot-di-dong-tren-ad-va-sc-sao-cho-mamd-pspc-x-x0-mat-phang-a-di-qua-m-va-song-song-voi-sab-cat-hinh-chop-sabcd-t.8753881358034
Ta có :
sử dụng bunhiacôpski
\(\left(a+b+c\right)^2\le\left(a^2+2\right)\left(1+\frac{\left(b+c\right)^2}{2}\right)\)
Ta cần chứng minh
\(\left(b^2+2\right)\left(c^2+2\right)\ge3\left(1+\frac{\left(b+c\right)^2}{2}\right)\)
nhân ra rồi rút gọn sẽ có kết quả là :
\(\frac{b^2+c^2}{2}+b^2c^2-3bc+1\ge0\)
\(\Leftrightarrow\frac{b^2+c^2}{2}+\left(bc-1\right)^2-bc\ge0\)
\(\Leftrightarrow\frac{b^2+c^2}{2}\ge bc\)
Ta cần chứng minh : a1+a2+...+ann≥a1.a2...an−−−−−−−−−√na1+a2+...+ann≥a1.a2...ann với n∈N*n∈N*
Hiển nhiên bđt đúng với n = 2 , tức là a1+a22≥a1a2−−−−√a1+a22≥a1a2 (1)
Giả sử bđt đúng với n = k , tức là a1+a2+...+akk≥a1.a2...ak−−−−−−−−−√ka1+a2+...+akk≥a1.a2...akk với k>2k>2
Ta sẽ chứng minh bđt cũng đúng với mọi n = k + 1
Không mất tính tổng quát, đặt a1≤a2≤...≤ak≤ak+1a1≤a2≤...≤ak≤ak+1
thì : ak+1≥a1+a2+...+akkak+1≥a1+a2+...+akk . Lại đặt a1+a2+...+akk=x,x≥0a1+a2+...+akk=x,x≥0
⇒ak+1=x+y,y≥0⇒ak+1=x+y,y≥0 và xk=a1.a2...akxk=a1.a2...ak (suy ra từ giả thiết quy nạp)
Ta có : (a1+a2+...+ak+1k+1)k+1=(kx+x+yk+1)k+1=(x(k+1)+yk+1)k+1=(x+yk+1)k+1(a1+a2+...+ak+1k+1)k+1=(kx+x+yk+1)k+1=(x(k+1)+yk+1)k+1=(x+yk+1)k+1
≥xk+1+(k+1).yk+1.xk=xk+1+y.xk=xk(x+y)≥a1.a2...ak.ak+1≥xk+1+(k+1).yk+1.xk=xk+1+y.xk=xk(x+y)≥a1.a2...ak.ak+1
Suy ra (a1+a2+...+ak+1k+1)k+1≥a1.a2...ak+1−−−−−−−−−−√k+1(a1+a2+...+ak+1k+1)k+1≥a1.a2...ak+1k+1
Vậy bđt luôn đúng với mọi n > 2 (2)
Từ (1) và (2) suy ra đpcm.
Vì a;b;c dương nên tồn tại \(\sqrt{a};\sqrt{b};\sqrt{c}\)
Đặt:\(\sqrt{a};\sqrt{b};\sqrt{c}\rightarrow x;y;z\)
Ta viết lại bđt cần chứng minh: \(\left(x^2+y^2+z^2\right)^2\ge3\left(x^2yz+y^2xz+z^2xy\right)\)
Ta có: \(\left(x^2+y^2+z^2\right)^2\ge3\left(x^2y^2+y^2z^2+x^2z^2\right)\)
Áp dụng bđt Cauchy: \(x^2y^2+y^2z^2\ge2\sqrt{x^2y^4z^2}=2xy^2z\)
\(y^2z^2+z^2x^2\ge2\sqrt{x^2y^2z^4}=2xyz^2\)
\(x^2z^2+x^2y^2\ge2\sqrt{x^4y^2z^2}=2x^2yz\)
Cộng theo vế và rg:
\(x^2y^2+y^2z^2+x^2z^2\ge xyz^2+x^2yz+xy^2z\)
-> đpcm. Bằng khi x=y=z hay a=b=c
1) Áp dụng bunhiacopxki ta được \(\sqrt{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}\ge\sqrt{\left(2a^2+bc\right)^2}=2a^2+bc\), tương tự với các mẫu ta được vế trái \(\le\frac{a^2}{2a^2+bc}+\frac{b^2}{2b^2+ac}+\frac{c^2}{2c^2+ab}\le1< =>\)\(1-\frac{bc}{2a^2+bc}+1-\frac{ac}{2b^2+ac}+1-\frac{ab}{2c^2+ab}\le2< =>\)
\(\frac{bc}{2a^2+bc}+\frac{ac}{2b^2+ac}+\frac{ab}{2c^2+ab}\ge1\)<=> \(\frac{b^2c^2}{2a^2bc+b^2c^2}+\frac{a^2c^2}{2b^2ac+a^2c^2}+\frac{a^2b^2}{2c^2ab+a^2b^2}\ge1\) (1)
áp dụng (x2 +y2 +z2)(m2+n2+p2) \(\ge\left(xm+yn+zp\right)^2\)
(2a2bc +b2c2 + 2b2ac+a2c2 + 2c2ab+a2b2). VT\(\ge\left(bc+ca+ab\right)^2\) <=> (ab+bc+ca)2. VT \(\ge\left(ab+bc+ca\right)^2< =>VT\ge1\) ( vậy (1) đúng)
dấu '=' khi a=b=c
Bunhiacopxki:
\(\left(b+a+a\right)\left(b+c+\dfrac{c^2}{a}\right)\ge\left(b+\sqrt{ca}+c\right)^2\)
\(\Rightarrow\dfrac{2a^2+ab}{\left(b+\sqrt{ca}+c\right)^2}\ge\dfrac{2a^2+ab}{\left(2a+b\right)\left(b+c+\dfrac{c^2}{a}\right)}=\dfrac{a^2}{c^2+ab+bc}\)
Tương tự:
\(\dfrac{2b^2+bc}{\left(c+\sqrt{ca}+a\right)^2}\ge\dfrac{b^2}{a^2+ab+bc}\)
\(\dfrac{2c^2+ca}{\left(a+\sqrt{bc}+b\right)^2}\ge\dfrac{c^2}{b^2+ac+bc}\)
\(\Rightarrow P\ge\dfrac{a^2}{c^2+ab+ac}+\dfrac{b^2}{a^2+ab+bc}+\dfrac{c^2}{b^2+ac+bc}\)
\(\Rightarrow P\ge\dfrac{\left(a+b+c\right)^2}{a^2+b^2+c^2+2ab+2bc+2ca}=1\)
Dấu "=" xảy ra khi \(a=b=c\)
\(BĐT\Leftrightarrow\sqrt{\left(a^2b+b^2c+c^2\right)\left(ab^2+bc^2+ca^2\right)}\ge abc\)
\(+\sqrt[3]{abc\left(a^2+bc\right)\left(b^2+ca\right)\left(c^2+ab\right)}\)
Đặt \(P=\sqrt{\left(a^2b+b^2c+c^2\right)\left(ab^2+bc^2+ca^2\right)}\)
Áp dụng BĐT Bunhiacopski:
\(\left(a^2b+b^2c+c^2a\right)\left(ab^2+bc^2+ca^2\right)\ge\left(\text{ Σ}_{cyc}ab\sqrt{ab}\right)^2\)
\(\Rightarrow P\ge ab\sqrt{ab}+bc\sqrt{bc}+ca\sqrt{ca}\)(1)
Lại áp dụng BĐT Bunhiacopski:
\(\left(a^2b+b^2c+c^2a\right)\left(bc^2+ca^2+ab^2\right)\ge\left(3abc\right)^2\)
\(\Rightarrow P\ge3abc\)(2)
Tiếp tục áp dụng BĐT Bunhiacopski:
\(\left(a^2b+b^2c+c^2a\right)\left(ca^2+b^2a+c^2b\right)\ge\left(\text{Σ}_{cyc}a^2\sqrt{bc}\right)^2\)
\(\Rightarrow P\ge a^2\sqrt{bc}+b^2\sqrt{ca}+c^2\sqrt{ab}\)(3)
Từ (1), (2), (3) suy ra \(3P\ge3abc+\left[\text{Σ}_{cyc}\left(a^2\sqrt{bc}+bc\sqrt{bc}\right)\right]\)
Sử dụng một số phép biến đổi và bđt Cô - si cho 3 số , ta được:
\(3P\ge3abc+3\sqrt[3]{abc\left(a^2+bc\right)\left(b^2+ca\right)\left(c^2+ab\right)}\)
\(\Rightarrow P\ge abc+\sqrt[3]{abc\left(a^2+bc\right)\left(b^2+ca\right)\left(c^2+ab\right)}\)
hay \(\sqrt{\left(a^2b+b^2c+c^2\right)\left(ab^2+bc^2+ca^2\right)}\)
\(\ge abc+\sqrt[3]{abc\left(a^2+bc\right)\left(b^2+ca\right)\left(c^2+ab\right)}\)
Dấu "=" khi a = b = c > 0
P/S: Không biết đúng không nữa, chưa check lại
Do abc khác 0 nên ta chia cả 2 vế của bđt cho abc. Ta được:
\(\sqrt{\left(\frac{a}{c}+\frac{b}{a}+\frac{c}{b}\right)\left(\frac{b}{c}+\frac{c}{a}+\frac{a}{b}\right)}\ge1+\sqrt[3]{\left(1+\frac{bc}{a^2}\right)\left(a+\frac{ca}{b^2}\right)\left(1+\frac{ab}{c^2}\right)}\)
\(\Leftrightarrow\sqrt{3+\frac{bc}{a^2}+\frac{ca}{b^2}+\frac{ab}{c^2}+\frac{a^2}{bc}+\frac{b^2}{ca}+\frac{c^2}{ab}}\ge1+\sqrt[3]{\left(1+\frac{bc}{a^2}\right)\left(1+\frac{ca}{b^2}\right)\left(1+\frac{ab}{c^2}\right)}\)
ĐẶT: \(x=\frac{bc}{a^2};y=\frac{ca}{b^2};z=\frac{ab}{c^2}\Rightarrow xyz=1\)
KHI ĐÓ TA CẦN CHỨNG MINH:
\(\sqrt{3+x+y+z+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}}\ge1+\sqrt[3]{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\)
\(\Leftrightarrow\sqrt{3+x+y+z+xy+yz+zx}\ge1+\sqrt[3]{2+x+y+z+xy+yz+zx}\)
ĐẶT : \(t=\sqrt[3]{2+x+y+z+xy+yz+zx}\)
ÁP DỤNG BĐT AM-GM TA CÓ:
\(x+y+z+xy+yz+zx\ge6\sqrt[6]{xyz.xy.yz.zx}=6\) (DO xyz=1)
\(\Rightarrow t\ge\sqrt[3]{2+6}=2\)
VẬY BẤT ĐẲNG THỨC ĐÃ CHO TƯƠNG ĐƯƠNG VỚI:
\(\sqrt{t^3+1}\ge1+t\Leftrightarrow t^3+1\ge t^2+2t+1\Leftrightarrow t^3-t^2-2t\ge0\Leftrightarrow t\left(t+1\right)\left(t-2\right)\ge0\)
ĐÚNG VỚI : \(t\ge2\)
ĐẲNG THỨC XẢY RA KHI VÀ CHỈ KHI a=b=c
\(\Rightarrow DPCM\)
VL CTV MÀ CŨNG HỎI
CTV cũng được phép hỏi chứ bạn.