Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho biểu thức A=(2n+1/n-3)+(3n-5/n-3)-(4n-5/n-3)
Tìm n để A nhận giá trị nguyên
A = \(\frac{2n+1}{n-3}+\frac{3n-5}{n-3}-\frac{4n-5}{n-3}\)
= \(\frac{2n+1+3n-5-4n+5}{n-3}\)
= \(\frac{n+1}{n-3}\)= \(\frac{\left(n-3\right)+4}{n-3}\)= \(1+\frac{4}{n-3}\)
Để A nhận giá trị nguyên <=> \(1+\frac{4}{n-3}\inℤ\)<=> \(\frac{4}{n-3}\inℤ\)<=> \(n-3\inƯ\left(4\right)=\left\{-4;-2;-1;1;2;4\right\}\)
Ta lập bảng giá trị:
Vậy...
A = \(\frac{2n+1}{n-3}+\frac{3n-5}{n-3}-\frac{4n-5}{n-3}\)
= \(\frac{2n+1+3n-5-4n+5}{n-3}\)
= \(\frac{n+1}{n-3}\)= \(\frac{\left(n-3\right)+4}{n-3}\)= \(1+\frac{4}{n-3}\)
Để A nhận giá trị nguyên <=> \(1+\frac{4}{n-3}\inℤ\)<=> \(\frac{4}{n-3}\inℤ\)<=> \(n-3\inƯ\left(4\right)=\left\{-4;-2;-1;1;2;4\right\}\)
Ta lập bảng giá trị:
Vậy...