K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 11 2015

tick cho mình rồi mình làm cho

16 tháng 11 2015

khó thế??????????????????????

16 tháng 11 2015

TG ABC đều =>AB=AC=BC=>AM+MB=BN+NC=CZ+ZA

Mà AM=BN=CZ=>BM=NC=AZ

Xét Tg AMZ và tg CZN, có:

Góc A= góc C( Tg ABC đều)

AM=CZ

AZ=CN

Vậy tg AMZ= tg CZN(c.g.c)

=> MZ=NZ( cạnh tương ứng)(1)

Tương tự ta có: MZ=MN(2)

Từ (1), (2)=> MZ=ZN=NM=> tg MNZ đều

 

16 tháng 11 2015

Cau hoi tuong tu nha bn !

a: Xét tứ giác ABCD có

O là trung điểm chung của AC và BD

=>ABCD là hình bình hành

b: Xét ΔOAI và ΔOCN có

góc AOI=góc CON

OA=OC

góc OAI=góc OCN

=>ΔOAI=ΔOCN

=>AI=NC

=>AI=MN

mà AI//MN

nên AINM là hình bình hành

=>AM//IN

a: Xét ΔNAM vầ ΔNCP có

NA=NC

góc ANM=góc CNP

NM=NP

=>ΔNAM=ΔNCP

b: Xét tứ giác AMCP có

N là trung điểm chung của AC và MP

=>AMCP là hình bình hành

=>PC//AM

=>PC//AB

c: Xét ΔABCcó

M,N lần lượt là trung điểm của AB,AC

nên MN là đường trung bình

=>BC=2MN

Vì Tam giác `MNP` cân tại `M -> MN = MP,` \(\widehat{N}=\widehat{P}\)

Mà `MN= 3 cm, `\(\widehat{N}=60^0\)

`-> MN = MP = 3 cm, `\(\widehat{N}=\widehat{P}=60^0\)

Xét Tam giác `MNP:`

\(\widehat{M}+\widehat{N}+\widehat{P}=180^0\)

`->`\(\widehat{M}+60^0+60^0=180^0\) 

`->`\(\widehat{M}=60^0\)

Ta có:

\(\widehat{M}=\widehat{N}=\widehat{P}=60^0\)

`->` \(\text {Tam giác MNP là tam giác đều}\)

`-> MN = MP = NP = 3 cm.`

13 tháng 4 2023

Cám ơn nha

23 tháng 8 2023

a) Để chứng minh tam giác MAB đều, ta cần chứng minh MA = MB và góc MAB = 60°.

Vì MA = MD và tam giác MDA là tam giác đều, nên góc MDA = 60°. Vì tam giác ABC là tam giác vuông tại A, nên góc BAC = 90°. Từ đó, ta có góc MAD = 90° - 60° = 30°.

Do đó, góc MAB = góc MAD + góc BAC = 30° + 90° = 120°.

Vì góc MAB = 120° và góc MAB = 60°, nên tam giác MAB là tam giác đều.

b) Để chứng minh tam giác ACD vuông, ta cần chứng minh góc ADC = 90°.

Vì MA = MD và tam giác MDA là tam giác đều, nên góc MDA = 60°. Vì tam giác ABC là tam giác vuông tại A, nên góc BAC = 90°. Từ đó, ta có góc MAD = 90° - 60° = 30°.

Vì CD là trung tuyến trong tam giác ABC, nên góc CAD = góc BAC/2 = 90°/2 = 45°.

Do đó, góc ADC = góc MAD + góc CAD = 30° + 45° = 75°.

Vì góc ADC ≠ 90°, nên tam giác ACD không vuông.

c) Để chứng minh tam giác KGN cân, ta cần chứng minh KG = GN và góc KGN = góc NGK.

Vì DK là đường cao trong tam giác MDC, nên góc KDM = 90°.

Vì tam giác MDA là tam giác đều, nên góc MDA = 60°. Từ đó, ta có góc MDC = 90° - 60° = 30°.

Vì tam giác KDM là tam giác vuông tại K, nên góc KDM = 90°. Vì góc KDM = 30°, nên góc KDG = 90° - 30° = 60°.

Tương tự, ta có góc NGC = 60°.

Vì góc KDG = góc NGC = 60°, nên tam giác KGN là tam giác cân.

a: ΔABC vuông tại A

=>góc B+góc C=90 độ

=>góc B=60 độ

ΔACB vuông tại A có AM là trung tuyến

nên MA=MB=MC=BC/2

Xét ΔMAB có MA=MB và góc B=60 độ

nên ΔMAB đều

b: Xét tứ giác ABDC có

M là trung điểm chung của AD và BC

góc BAC=90 độ

=>ABDC là hình chữ nhật

=>góc ACD=90 độ

=>ΔACD vuông tại C

c: Xét ΔDCK vuông tại C và ΔBAK vuông tại A có

DC=BA

CK=AK

=>ΔDCK=ΔBAK

=>DK=KB

Xét ΔCAD có

DK,CM là trung tuyến

DK cắt CM tại N

=>N là trọng tâm

=>KN=1/3KD

Xét ΔCAB có

AM,BK là trung tuyến

AM cắt BK tại G

=>G là trọng tâm

=>KG=1/3KB

=>KG=KN

=>ΔKGN cân tại K

17 tháng 1 2016

các bạn hãy trả lời nhanh câu hỏi ở bên trên cho mình