Cho đường tròn tâm O và điểm P nằm ngoài đường tròn. Từ B vẽ hai tiếp tuyến PA và PB (A và B àlà hai tiếp điểm). PO cắt đường tròn tâm O tại K và I(K nằm giữa B và Ở) và cắt AB tại H. gọi D là điểm đối xứng của B qua O. C là giao điểm của PD và đường tròn tâm O. Chứng minh tứ giác BHCP nội tiếp chứng minh AC Vuông góc với CH. Đường tròn ngoại tiếp tam giác ACH cắt IC tại M, AM cắt IB tại Q. Chứng minh M là trung điểm của AQ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này bạn đã đăng rồi mà? Bạn vui lòng không đăng 1 bài nhiều lần gây loãng box toán!!!
a) Xét (O) có
\(\widehat{ADC}\) là góc nội tiếp chắn \(\stackrel\frown{AC}\)
\(\widehat{PAC}\) là góc tạo bởi tiếp tuyến PA và dây cung AC
Do đó: \(\widehat{ADC}=\widehat{PAC}\)(Hệ quả)
hay \(\widehat{ADP}=\widehat{CAP}\)
Xét ΔADP và ΔCAP có
\(\widehat{ADP}=\widehat{CAP}\)(cmt)
\(\widehat{APD}\) chung
Do đó: ΔADP∼ΔCAP(g-g)
Suy ra: \(\dfrac{PD}{PA}=\dfrac{PA}{PC}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(PA^2=PC\cdot PD\)(đpcm)
b, Dễ CM được \(\widehat{PAB}=\widehat{PQB}\) (Cm được 5 điểm P, A, O, Q, B thuộc đường tròn theo tứ giác nt)
Mà \(\widehat{PAB}=\widehat{AFB}\) (góc tạo bởi tia tiếp tuyến và dây cung và góc nt cùng chắn cung \(\stackrel\frown{AB}\))
\(\Rightarrow\) \(\widehat{PQB}=\widehat{AFB}\)
Mà 2 góc ở vị trí đồng vị \(\Rightarrow\) AF // CD (đpcm)
Chúc bn học tốt!
Lời giải:
a) Xét tam giác $PAC$ và $PDA$ có:
$\widehat{P}$ chung
$\widehat{PAC}=\widehat{PDA}$ (góc tạo bởi tiếp tuyến và dây cung thì bằng góc nội tiếp chắn cung đó)
$\Rightarrow \triangle PAC\sim \triangle PDA$ (g.g)
$\Rightarrow \frac{PA}{PC}=\frac{PD}{PA}\Rightarrow PA^2=PC.PD$ (đpcm)
b) Vì $Q$ là trung điểm $CD$ nên $OQ\perp CD$
$\Rightarrow \widehat{PQO}+\widehat{PBO}=90^0+90^0=180^0$
$\Rightarrow PQOB$ là tứ giác nội tiếp
$\Rightarrow \widehat{PQB}=\widehat{POB}=\frac{1}{2}\widehat{AOB}=\widehat{AFB}$ (tính chất góc ở tâm và góc nội tiếp cùng chắn 1 cung)
Mà 2 góc này ở vị trí đồng vị nên $AF\parallel CD$ (đpcm)
a: Xét (O) có
AB,AC là các tiếp tuyến
nên AB=AC
mà OB=OC
nên OA là trung trực của BC
Xét tứ giác OBAC có
góc OBA+góc OCA=180 độ
nên OBAC là tứ giác nội tiếp
b: Xét ΔAEC và ΔACD có
gó ACE=góc ADC
góc EAC chung
Do đo: ΔAEC đồng dạng với ΔACD
=>AE/AC=AC/AD
=>AC^2=AE*AD