cho \(a^2+b^2=5\)
ab=3
tìm \(\left(a+b\right)^2và\left(a-b\right)^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta chứng minh bổ đề: Với \(|x|\ge2\)thì \(2x^2-4x\ge0\)
Với \(x\le-2\)thì nó đúng
Xét \(x\ge2\)thì ta có:
\(2x\left(x-2\right)\ge0\)(đúng)
Quay lại bài toán:
\(\left(a^2+1\right)\left(b^2+1\right)\ge\left(a+b\right)\left(ab+1\right)+5\)
\(\Leftrightarrow4a^2b^2+4a^2+4b^2-4a^2b-4ab^2-4a-4b-16\ge0\)
\(\Rightarrow VT=\left(a^2b^2-4a^2b+4a^2\right)+\left(a^2b^2-4b^2a+4b^2\right)+\left(a^2b^2-16\right)+\left(\frac{a^2b^2}{2}-4a\right)+\left(\frac{a^2b^2}{2}-4b\right)\)
\(\ge\left(ab-2a\right)^2+\left(ab-2b\right)^2+\left(a^2b^2-16\right)+\left(2a^2-4a\right)+\left(2b^2-4b\right)\ge0\)
Vậy ta có ĐPCM
Biến đổi VP:
\(\left(a^3+b^3\right)\left(a^2+b^2\right)-\left(a+b\right)\)
\(=a^5+b^5+a^3b^2+a^2b^3-\left(a+b\right)\)
\(=a^5+b^5+a^2b^2\left(a+b\right)-\left(a+b\right)\)
\(=a^5+b^5+\left(a+b\right)-\left(a+b\right)\)
\(=a^5+b^5\left(ĐPCM\right)\)
Lời giải:
Do $ab+bc+ac=5$ nên:
\(a^2+5=a^2+ab+bc+ac=(a+b)(a+c)\)
\(b^2+5=b^2+ab+bc+ac=(b+c)(b+a)\)
\(c^2+5=c^2+ab+bc+ac=(c+a)(c+b)\)
Do đó:
\(A=a\sqrt{\frac{(b+c)(b+a)(c+a)(c+b)}{(a+b)(a+c)}}+b\sqrt{\frac{(a+b)(a+c)(c+a)(c+b)}{(b+c)(b+a)}}+c\sqrt{\frac{(a+b)(a+c)(b+c)(b+a)}{(c+a)(c+b)}}\)
\(=a\sqrt{(b+c)^2}+b\sqrt{(c+a)^2}+c\sqrt{(a+b)^2}=a(b+c)+b(c+a)+c(a+b)\)
\(=2(ab+bc+ac)=2.5=10\)
\(B=\left(\dfrac{a-b}{a^2+ab}-\dfrac{a}{b^2+ab}\right):\left(\dfrac{b^3}{a^3-ab^2}+\dfrac{1}{a+b}\right)\)
\(=\left(\dfrac{a-b}{a\left(a+b\right)}-\dfrac{a}{b\left(a+b\right)}\right):\left(\dfrac{b^3}{a\left(a-b\right)\left(a+b\right)}+\dfrac{1}{a+b}\right)\)
\(=\dfrac{b\left(a-b\right)-a^2}{ab\left(a+b\right)}:\dfrac{b^3+a\left(a-b\right)}{a\left(a-b\right)\left(a+b\right)}\)
\(=\dfrac{ab-b^2-a^2}{ab\left(a+b\right)}\cdot\dfrac{a\left(a-b\right)\left(a+b\right)}{a^2-ab+b^3}\)
\(=\dfrac{\left(a-b\right)\left(ab-b^2-a^2\right)}{b\left(a^2-ab+b^3\right)}\)
\(=\dfrac{-\left(a-b\right)\left(a^2-ab+b^2\right)}{b\left(a^2-ab+b^3\right)}\)
Đề lỗi rồi chứ mình ko rút gọn đc nữa
2ab=6;-2ab=-6
=>\(\left(a+b\right)^2=\left(5+6\right)^2=121\)
=>\(\left(a-b\right)^2=\left(5-6\right)^2=1\)
(a+b)^2=a^2+b^2+2ab=5+6=11
(a-b)^2=a^2-2ab+b^2=5-6=-1