Tìm x biết
\(\sqrt{x^2+1}=x+2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
ĐKXĐ: $x\geq 1$
PT $\Leftrightarrow \sqrt{(x-1)+2\sqrt{x-1}+1}-\sqrt{(x-1)-2\sqrt{x-1}+1}=2$
$\Leftrightarrow \sqrt{(\sqrt{x-1}+1)^2}-\sqrt{(\sqrt{x-1}-1)^2}=2$
$\Leftrightarrow |\sqrt{x-1}+1|-|\sqrt{x-1}-1|=2$
Nếu $2\geq x\geq 1$ thì:
$\sqrt{x-1}+1+(1-\sqrt{x-1})=2$
$\Leftrightarrow 2=2$ (luôn đúng)
Nếu $x>2$ thì: $\sqrt{x-1}+1+(\sqrt{x-1}-1)=2$
$\Leftrightarrow 2\sqrt{x-1}=2$
$\Leftrightarrow x-1=1$
$\Leftrihgtarrow x=2$ (loại)
Vậy $2\geq x\geq 1$
$
Mình sửa lại đề tí:
\(\sqrt{x+2\sqrt{x-1}}-\sqrt{x-2\sqrt{x-1}}=2\)
ĐKXĐ: \(x\ge1\)
\(\sqrt{x-1+2\sqrt{x-1}+1}-\sqrt{x-1-2\sqrt{x-1}+1}=2\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}+1\right)^2}-\sqrt{\left(\sqrt{x-1}-1\right)^2}=2\)
\(\Leftrightarrow\left|\sqrt{x-1}+1\right|-\left|\sqrt{x-1}-1\right|=2\)
\(\Leftrightarrow\sqrt{x-1}-\left|\sqrt{x-1}-1\right|=1\)
TH1: \(x\ge2\Rightarrow\sqrt{x-1}-1\ge0\) pt trở thành:
\(\sqrt{x-1}-\left(\sqrt{x-1}-1\right)=1\) (luôn đúng)
TH2: \(1\le x< 2\)
\(\Rightarrow\sqrt{x-1}-\left(1-\sqrt{x-1}\right)=1\)
\(\Leftrightarrow2\sqrt{x-1}=2\Rightarrow x=2\) (ktm)
Vậy nghiệm của pt là \(x\ge2\)
b: Thay \(x=7-2\sqrt{6}\) vào A, ta được:
\(A=\dfrac{3\cdot\left(\sqrt{6}-1\right)}{-7+2\sqrt{6}-5\left(\sqrt{6}+1\right)-1}\)
\(=\dfrac{3\cdot\left(\sqrt{6}-1\right)}{-8+2\sqrt{6}-5\sqrt{6}-5}\)
\(=\dfrac{-3\sqrt{6}+3}{13+3\sqrt{6}}=\dfrac{93-48\sqrt{6}}{115}\)
\(a,P=\dfrac{-x+2\sqrt{x}-1+x-2\sqrt{x}+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}:\dfrac{2\sqrt{x}+1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}\\ P=\dfrac{\sqrt{x}+1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{\sqrt{x}+1}=\dfrac{\sqrt{x}}{\sqrt{x}-1}\)
\(b,x=6-2\sqrt{5}=\left(\sqrt{5}-1\right)^2\\ \Rightarrow P=\dfrac{\sqrt{5}-1}{\sqrt{5}-1+1}=\dfrac{\sqrt{5}-1}{\sqrt{5}}=\dfrac{5-\sqrt{5}}{5}\\ c,\dfrac{P}{\sqrt{x}}=\dfrac{\sqrt{x}}{\sqrt{x}-1}\cdot\dfrac{1}{\sqrt{x}}=\dfrac{1}{\sqrt{x}-1}\le\dfrac{1}{0-1}=-1\)
Vậy \(\left(\dfrac{P}{\sqrt{x}}\right)_{max}=-1\Leftrightarrow x=0\)
\(1,\\ a,ĐK:\left\{{}\begin{matrix}x\ge0\\x+5\ge0\end{matrix}\right.\Leftrightarrow x\ge0\\ b,Sửa:B=\left(\sqrt{3}-1\right)^2+\dfrac{24-2\sqrt{3}}{\sqrt{2}-1}\\ B=4-2\sqrt{3}+\dfrac{2\sqrt{3}\left(\sqrt{2}-1\right)}{\sqrt{2}-1}\\ B=4-2\sqrt{3}+2\sqrt{3}=4\\ 3,\\ =\left[1-\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{1+\sqrt{x}}\right]\cdot\dfrac{\sqrt{x}-3+2-2\sqrt{x}}{\left(1-\sqrt{x}\right)\left(\sqrt{x}-3\right)}-2\\ =\left(1-\sqrt{x}\right)\cdot\dfrac{-\sqrt{x}-1}{\left(1-\sqrt{x}\right)\left(\sqrt{x}-3\right)}-2\\ =\dfrac{-\sqrt{x}-1}{\sqrt{x}-3}-2=\dfrac{-\sqrt{x}-1-2\sqrt{x}+6}{\sqrt{x}-3}=\dfrac{-3\sqrt{x}+5}{\sqrt{x}-3}\)
Ta biết: \(\sqrt{P}=\dfrac{1}{2}\Rightarrow P=\left(\dfrac{1}{2}\right)^2=\dfrac{1}{4}\) (1)
Với đk: \(P\ge0\)
\(\Rightarrow\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\ge0\)
\(\Leftrightarrow\sqrt{x}-2\ge0\) (vì \(\sqrt{x}+1\ge1>0\forall x\ge0\))
\(\Leftrightarrow\sqrt{x}\ge2\)
\(\Leftrightarrow x\ge4\)
\(\left(1\right)\Leftrightarrow\dfrac{\sqrt{x}-2}{\sqrt{x}+1}=\dfrac{1}{4}\)
\(\Leftrightarrow4\left(\sqrt{x}-2\right)=\sqrt{x}+1\)
\(\Leftrightarrow4\sqrt{x}-8=\sqrt{x}+1\)
\(\Leftrightarrow4\sqrt{x}-\sqrt{x}=1+8\)
\(\Leftrightarrow3\sqrt{x}=9\)
\(\Leftrightarrow\sqrt{x}=3\)
\(\Leftrightarrow x=3^2\)
\(\Leftrightarrow x=9\left(tm\right)\)
Vậy: ...
Ta có: \(\sqrt{P}< \dfrac{1}{2}\Rightarrow P< \left(\dfrac{1}{2}\right)^2\Leftrightarrow P< \dfrac{1}{4}\) (1)
Với đk: \(P\ge0\)
\(\Leftrightarrow\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\ge0\)
\(\Leftrightarrow\sqrt{x}-2\ge0\) (vì \(\sqrt{x}+1>0\forall x\ge0\))
\(\Leftrightarrow\sqrt{x}\ge2\)
\(\Leftrightarrow x\ge4\)
\(\left(1\right)\Leftrightarrow\dfrac{\sqrt{x}-2}{\sqrt{x}+1}< \dfrac{1}{4}\)
\(\Leftrightarrow\dfrac{\sqrt{x}-2}{\sqrt{x}+1}-\dfrac{1}{4}< 0\)
\(\Leftrightarrow\dfrac{4\sqrt{x}-8}{4\left(\sqrt{x}+1\right)}-\dfrac{\sqrt{x}+1}{4\left(\sqrt{x}+1\right)}< 0\)
\(\Leftrightarrow\dfrac{4\sqrt{x}-8-\sqrt{x}-1}{4\left(\sqrt{x}+1\right)}< 0\)
\(\Leftrightarrow\dfrac{3\sqrt{x}-9}{4\left(\sqrt{x}+1\right)}< 0\)
\(\Leftrightarrow3\sqrt{x}-9< 0\)
\(\Leftrightarrow\sqrt{x}< 3\)
\(\Leftrightarrow x< 9\)
Kết hợp với đk: \(4\le x< 9\)
\(\sqrt{x^2+1}=x+2\)
\(\Leftrightarrow\left(\sqrt{x^2+1}\right)^2=\left(x+2\right)^2\)
\(\Leftrightarrow x^2+1=x^2+4x+4\)
\(\Leftrightarrow x^2+1-x^2-4x-4=0\)
\(\Leftrightarrow-4x-3=0\Leftrightarrow x=-\frac{3}{4}\)
Vậy phương trình có tập nghiệm S = { -3/4 }