Cho tam giác ABC, M, N, P thuộc AB, BC, CA. Cho MA/MB . NB/NC . NC/NA = 1.
CMR: M, N, P thẳng hàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì điểm O không cố định. Ta có thể lách luật như sau: Bài toán luôn đúng với mọi vị trí của O. ta giả sử với điểm O ta nối sao cho M, N, P lần lượt là TĐ của BC; CA; AB thì bài toán dễ đi rất nhiều. Song như thế e cùn quá. Ta làm sau: a) PA/PB=S(CAP)/S(CPB) (chung đường cao hạ từ C xuống AB) Tương tự MB/MC= S(ABM)/ S(AMC)(chung đường cao hạ từ A xuống BC) AN/NC= S(BAN)/S(BCN) (chung đường cao hạ từ B xuống AC) PA/PBxMB/MCxAN/NC= S(CAP)/S(CPB)xS(ABM)/ S(AMC)xS(BAN)/S(BCN)=1 b)PO/PC= S(AOP)/ S(APC) MO/MA= S(CMO)/ S(CAM) NO/NB= S(ANO)/ ABN) Cộng hai vế ta có: PO/PC+MO/MA+NO/NB=S(AOP)/ S(APC)+S(CMO)/ S(CAM)+S(ANO)/ ABN)
Vì điểm O không cố định. Ta có thể lách luật như sau: Bài toán luôn đúng với mọi vị trí của O. ta giả sử với điểm O ta nối sao cho M, N, P lần lượt là TĐ của BC; CA; AB thì bài toán dễ đi rất nhiều. Song như thế e cùn quá. Ta làm sau:
a) PA/PB=S(CAP)/S(CPB) (chung đường cao hạ từ C xuống AB)
Tương tự MB/MC= S(ABM)/ S(AMC)(chung đường cao hạ từ A xuống BC)
AN/NC= S(BAN)/S(BCN) (chung đường cao hạ từ B xuống AC)
PA/PBxMB/MCxAN/NC= S(CAP)/S(CPB)xS(ABM)/ S(AMC)xS(BAN)/S(BCN)=1
b)PO/PC= S(AOP)/ S(APC)
MO/MA= S(CMO)/ S(CAM)
NO/NB= S(ANO)/ ABN)
Cộng hai vế ta có: PO/PC+MO/MA+NO/NB=S(AOP)/ S(APC)+S(CMO)/ S(CAM)+S(ANO)/ ABN)
Đáp án:
Giải thích các bước giải:
[Ta có hình vẽ]
Vì
+) Nối với
(vì đáy , chung chiều cao hạ từ )
(vì đáy , chung chiều cao hạ từ )
Đ/S: