K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: n^5 - n = n (n^4 -1 )
=n (n^2-1)(n^2+1)
=n(n-1)(n+1)(n^2 - 4 +5)
=n(n-1)(n+1)(n^2-4) + n(n-1)(n+1)5
= (n-2)(n-1)n(n+1)(n+2)+ n(n-1)(n+1)5
Vì (n-2)(n-1)n(n+1)(n+2) chia hết cho 30
và n(n-1)(n+1)5 chia hết cho 30
Nên (n-2)(n-1)n(n+1)(n+2)+ n(n-1)(n+1)5 chia hết cho 30
hay n^5-n chia hết cho 30

13 tháng 2 2019

lộn đề r nha OLM.VN

25 tháng 7 2018

\(31n^3+11n\)

\(=25n^3+6n^3+5n+6n\)

\(=5n\left(5n^2+1\right)+6n\left(n^2+1\right)\)

Do \(5n^2⋮5\Rightarrow5n^2+1⋮6\)

Lại có \(6n\left(n^2+1\right)⋮6\)

\(\RightarrowĐPCM\)

13 tháng 1 2016

Có a2 - 1 = (a+1)(a-1) 

Xét tích (a-1)a(a+1) chia hết cho 3

Do a là số ng tố > 3 nên a không chia hết cho 3
=> (a-1)(a+1) chia hết cho 3          (1)

Có a là số lẻ, đặt a = 2k + 1
Do vậy a2 - 1 = 4k(k+1)

Có k(k+1) luôn chia hết cho 2 => ak(k+1) chia hết cho 8            (2)

Từ (1) và (2) suy ra a2 - 1 chia hết cho 24 ( vì (3;8) =1 )

5 tháng 4 2017

1)

a)251-1

=(23)17-1\(⋮\)23-1=7

Vậy 251-1\(⋮\)7

b)270+370

=(22)35+(32)35\(⋮\)22+32=13

Vậy 270+370\(⋮\)13

c)1719+1917

=(BS18-1)19+(BS18+1)17

=BS18-1+BS18+1

=BS18\(⋮\)18

d)3663-1\(⋮\)35\(⋮\)7

Vậy 3663-1\(⋮\)7

3663-1

=3663+1-2

=BS37-2\(⋮̸\)37

Vậy 3663-1\(⋮̸\)37

e)24n-1

=(24)n-1\(⋮\)24-1=15

Vậy 24n-1\(⋮\)15

13 tháng 8 2019

BS là gì vậy bạn???

25 tháng 7 2018

Ta có : A = \(31n^3+11n\)\(=31n^3-n+12n\)\(=n.31\left(n^2-1\right)+12n\)\(=31.n\left(n-1\right).\left(n+1\right)+12n\)

Vì (n-1).n.(n+1) là tích của 3 số nguyên liên tiếp 

nên (n-1).n.(n+1) chia hết cho 6

=> (n-1).n.(n+1).31 chia hết cho 6

Và 12n chia hết cho 6             

 =>31 (n-1).n.(n+1) + 12n  chia hết cho 6

vậy A chia hết cho 6

AH
Akai Haruma
Giáo viên
14 tháng 12 2021

Lời giải:
$n^5-n=n(n^4-1)=n(n^2-1)(n^2+1)=n(n-1)(n+1)(n^2+1)$
Vì $n(n-1)(n+1)$ là tích 3 số nguyên liên tiếp nên $n(n-1)(n+1)\vdots 3$
Vì $n(n-1)$ là tích 2 số nguyên liên tiếp nên $n(n-1)\vdots 2$

$\Rightarrow n^5-n\vdots 2,3$
Mà $(2,3)=1$ nên $n^5-n\vdots 6(*)$

Mặt khác:
Ta biết rằng 1 scp chia 5 có thể có dư là $0,1,4$
$\Rightarrow n(n^2-1)(n^2+1)\vdots 5, \forall n$ nguyên $(**)$

Từ $(*); (**)\Rightarrow n^5-n\vdots (5.6=30)$