Cho điểm S nằm ngoài đường tròn (O;R). Vẽ tiếp tuyến SA và cát tuyến SBC với đường tròn. Tia phân giác góc BAC cắt BC tại D và đường tròn tại E. CMR: a) OE vuông góc BC
b) AB.DC=AC.DB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có SA = SB (tc tiếp tuyến cắt nhau )
OA = OB = R
Vậy OS là đường trung trực đoạn AB
=> SO vuông AB tại H
b, Vì I là trung điểm
=> OI vuông NS
Xét tứ giác IHSE ta có ^EHS = ^EIS = 900
mà 2 góc này kề, cùng nhìn cạnh ES
Vậy tứ giác IHSE nt 1 đường tròn
=> ^ESH = ^HIO ( góc ngoài đỉnh I )
Xét tam giác OIH và tam giác OSE có
^HIO = ^OSE (cmt)
^O_ chung
Vậy tam giác OIH ~ tam giác OSE (g.g)
\(\dfrac{OI}{OS}=\dfrac{OH}{OE}\Rightarrow OI.OE=OH.OS\)
Xét tam giác OAS vuông tại A ( do SA là tiếp tuyến với A là tiếp điểm), đường cao AH ta có
\(OA^2=OH.OS\)(hệ thức lượng)
\(\Rightarrow OA^2=R^2=OI.OE\)
Xét tứ giác AOBS có
\(\widehat{SAO}+\widehat{SBO}=180^0\)
Do đó: AOBS là tứ giác nội tiếp
a: góc SAO=góc SHO=90 độ
=>SAHO nội tiếp
b: Xét ΔSAB và ΔSCA có
góc SAB=góc SCA
góc ASB chung
=>ΔSAB đồng dạng với ΔSCA
=>SA^2=SB*SC
a: góc MAO+góc MBO=180 độ
=>MAOB nội tiếp
Xét (O) có
MA,MB là tiếp tuyến
=>MA=MB
mà OA=OB
nên OM là trung trực của AB
=>OM vuông góc AB
b: góc CAE=1/2*180=90 độ
Xét ΔOAM vuông tại A và ΔCAS vuông tại A có
góc AOM=góc ACS
=>ΔOAM đồng dạng với ΔCAS
1:
ΔOBC cân tại O
mà OI là trung tuyến
nên OI vuông góc BC
góc OIS=góc OAS=90 độ
=>OIAS nội tiếp
2:
Xet ΔSAO vuông tại A có AH là đường cao
nên SH*SO=SA^2
3:
ΔOAD cân tại O
mà OS là đường cao
nên OS là phân giác của góc AOD
Xét ΔAOS và ΔDOS co
OA=OD
góc AOS=góc DOS
OS chung
=>ΔAOS=ΔDOS
=>góc SDO=90 độ
=>SD là tiếp tuyến của (O)
4: Xet ΔSAK và ΔSIA có
góc SAK=góc SIA
gó ASK chung
=>ΔSAK đồng dạng với ΔSIA
=>SA/SI=SK/SA
=>SA^2=SK*SI
Kiến thức áp dụng
+ Số đo của góc có đỉnh nằm bên trong đường tròn bằng nửa tổng số đo hai cung bị chắn.
+ Số đo của góc có đỉnh nằm bên ngoài đường tròn bằng nửa hiệu số đo hai cung bị chắn.
⇒ A ^ + B S M ^
= 1 2 . s đ N C ⏜ - s đ B M ⏜ + 1 2 s đ N C ⏜ + s đ M B ⏜ = s đ N C ⏜ 1
(đpcm)