K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 2 2019

Muốn chứng minh \(\frac{n+6}{n+7}\)là phân số tối giản thì cần phải chứng minh n + 6 và n + 7 nguyên tố cùng nhau hay ƯCLL của chúng bằng 1.

Gọi d là ƯCLL của n + 6 và n + 7 (d>0)

\(\Rightarrow n+6⋮d\) và \(n+7⋮d\)

\(\Rightarrow\left(n+7\right)-\left(n+6\right)⋮d\)(hai số chia hết cho d nên hiệu của nó cũng chia hết cho d)

\(\Rightarrow1⋮d\)\(\Rightarrow d=1\)(vì d>0)

=> n + 6 và n + 7 nguyên tố cùng nhau

Vậy \(\frac{n+6}{n+7}\)là phân số tối giản.

12 tháng 2 2019

Có: n+6 và n+7 là 2 số nguyên liên tiếp nên: hoặc n+6 chẵn thì n+7 lẻ hoặc n+6 lẻ thì n+7 chẵn

Vì thế: ƯCLN(n+6;n+7)=1 hay n+6/n+7 là phân số tối giản

goi d la UCLN (7n+10;5n+9) ( d thuoc N sao)

=>7n+10 chia hết cho d;5n+9 chia hết cho d

=>35n+50 chia het cho d;35n+63

=>-13 chia hết d

Ma 7n+10 ko chia het cho d => 7n+10/5n+9 la ps toi gian

3 tháng 4 2017

Gọi d là UCLN( 7.n +10, 5.n+9)

=> 7n +10 chia hết d 

     5n +9 chia hết d

ta có ; 5(7n +10) - 7(5n +9) = 50 - 63 = -13 CHIA HẾT CHO d

Mặt khác : 7n+10 là số lẻ , 5n +9 là số chẵn => phân số đó tối giản

Mình chỉ làm tắt  thôi nhé có gì lên lớp hỏi cô giáo

Gọi d=ƯCLN(n+1;n+2)

=>n+1-n-2 chia hết cho d

=>-1 chia hết cho d

=>d=1

=>PSTG

20 tháng 4 2023

thx bn nha

 

a: Để A nguyên thì \(n+2\in\left\{1;-1;3;-3\right\}\)

=>\(n\in\left\{-1;-3;1;-5\right\}\)

b: n+6/n+7

Gọi d=ƯCLN(n+6;n+7)

=>n+6-n-7 chiahết cho d

=>-1 chia hết cho d

=>d=1

=>PSTG

26 tháng 11 2019

Gọi d=ƯCLN(7n+1;6n+1)

=>42n+6-42n-7 chia hết cho d

=>1 chia hết cho d

=>d=1

=>PSTG

20 tháng 3 2021

Trình bày ra đi

25 tháng 11 2023

Gọi d=ƯCLN(2n+3;4n+8)

=>\(\left\{{}\begin{matrix}4n+8⋮d\\2n+3⋮d\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}4n+8⋮d\\4n+6⋮d\end{matrix}\right.\Leftrightarrow4n+8-4n-6⋮d\)

=>\(2⋮d\)

mà 2n+3 lẻ

nên d=1

=>ƯCLN(2n+3;4n+8)=1

=>\(P=\dfrac{2n+3}{4n+8}\) là phân số tối giản với mọi n<>-2

AH
Akai Haruma
Giáo viên
5 tháng 2

a/

Gọi $d=ƯCLN(n+1, 2n+3)$

$\Rightarrow n+1\vdots d; 2n+3\vdots d$

$\Rightarrow 2n+3-2(n+1)\vdots d$

$\Rightarrow 1\vdots d$

$\Rightarrow d=1$
Vậy $\frac{n+1}{2n+3}$ là phân số tối giản với mọi số tự nhiên $n$

AH
Akai Haruma
Giáo viên
5 tháng 2

b/

Cho $a=2, b=2$ thì phân số đã cho bằng $\frac{24}{26}$ không là phân số tối giản bạn nhé. 

Bạn xem lại đề.

28 tháng 12 2023

Câu 1: Vì p và 10p + 1 là các số nguyên tố lớn hơn 3 nên p ≠ 2 vậy p là các số lẻ.

Ta có: 10p + 1 - p  = 9p + 1 

      Vì p là số lẻ nên 9p + 1 là số chẵn ⇒ 9p + 1 = 2k

          17p + 1 = 8p + 9p + 1   = 8p + 2k = 2.(4p + k) ⋮ 2

        ⇒ 17p + 1 là hợp số (đpcm)

      

AH
Akai Haruma
Giáo viên
28 tháng 12 2023

Câu 1: 

Vì $p$ là stn lớn hơn $3$ nên $p$ không chia hết cho $3$. Do đó $p$ có dạng $3k+1$ hoặc $3k+2$.

Nếu $p=3k+2$ thì:

$10p+1=10(3k+2)+1=30k+21\vdots 3$

Mà $10p+1>3$ nên không thể là số nguyên tố (trái với giả thiết)

$\Rightarrow p$ có dạng $3k+1$.

Khi đó:
$17p+1=17(3k+1)+1=51k+18=3(17k+6)\vdots 3$. Mà $17p+1>3$ nên $17p+1$ là hợp số
 (đpcm)