Tìm giá trị nhỏ nhất:
a) A = |x + 5| + 2019
b) B = (x - 2)4 + (y + 1)2 - 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: -1<=sin x<=1
=>-1+3<=sin x+3<=1+3
=>2<=sinx+3<=4
=>\(\dfrac{1}{2}>=\dfrac{1}{sinx+3}>=\dfrac{1}{4}\)
=>\(2>=\dfrac{4}{sinx+3}>=1\)
=>\(-2< =-\dfrac{4}{sinx+3}< =-1\)
=>-2+3<=y<=-1+3
=>1<=y<=2
y=1 khi \(\dfrac{-4}{sinx+3}+3=1\)
=>\(\dfrac{-4}{sinx+3}=-2\)
=>sinx+3=2
=>sin x=-1
=>x=-pi/2+k2pi
y=3 khi sin x=1
=>x=pi/2+k2pi
b: -1<=cosx<=1
=>4>=-4cosx>=-4
=>9>=-4cosx+5>=1
=>2/9<=2/5-4cosx<=2
=>2/9<=y<=2
\(y_{min}=\dfrac{2}{9}\) khi \(\dfrac{2}{5-4cosx}=\dfrac{2}{9}\)
=>\(5-4\cdot cosx=9\)
=>4*cosx=4
=>cosx=1
=>x=k2pi
y max khi cosx=-1
=>x=pi+k2pi
c: \(0< =cos^2x< =1\)
=>\(0< =2\cdot cos^2x< =2\)
=>\(-1< =y< =2\)
y min=-1 khi cos^2x=0
=>x=pi/2+kpi
y max=2 khi cos^2x=1
=>sin^2x=0
=>x=kpi
a) Do \(\left|x\right|\ge0\)
\(\Rightarrow A=\left|x\right|+5\ge5\)
\(minA=5\Leftrightarrow x=0\)
b) Do \(\left|x-\dfrac{2}{3}\right|\ge0\)
\(\Rightarrow B=\left|x-\dfrac{2}{3}\right|-4\ge-4\)
\(minB=-4\Leftrightarrow x=\dfrac{2}{3}\)
c) Do \(\left|3x-1\right|\ge0\)
\(\Rightarrow C=\left|3x-1\right|-\dfrac{1}{2}\ge-\dfrac{1}{2}\)
\(minC=-\dfrac{1}{2}\Leftrightarrow x=\dfrac{1}{3}\)
\(A=\left|x\right|+5\ge5\)
Dấu \("="\Leftrightarrow x=0\)
\(B=\left|x-\dfrac{2}{3}\right|-4\ge-4\)
Dấu \("="\Leftrightarrow x-\dfrac{2}{3}=0\Leftrightarrow x=\dfrac{2}{3}\)
\(C=\left|3x-1\right|-\dfrac{1}{2}\ge-\dfrac{1}{2}\)
Dấu \("="\Leftrightarrow3x-1=0\Leftrightarrow x=\dfrac{1}{3}\)
\(B=\left(x^2+1\right)\left(y^2+1\right)-\left(x-4\right)\left(x+4\right)-\left(y-5\right)\left(y+5\right)\\ B=x^2y^2+x^2+y^2+1-x^2+16-y^2+25\\ B=x^2y^2+41\ge41\)
Dấu "=" xảy ra khi \(x^2y^2\Leftrightarrow x=y=0\)
Vậy \(MaxB=41\Leftrightarrow x=y=0\)
\(A=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\\ A=\left[\left(x-1\right)\left(x+6\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]\\ A=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\\ A=\left(x^2+5x\right)^2-36\ge-36\)
Dấu "=" xảy ra khi
\(\left(x^2+5x\right)^2=0\\ \Leftrightarrow x\left(x+5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
Vậy \(MaxA=-36\Leftrightarrow x\in\left\{0;-5\right\}\)
$A=(x-4)^2+1$
Ta thấy $(x-4)^2\geq 0$ với mọi $x$
$\Rightarroe A=(x-4)^2+1\geq 0+1=1$
Vậy GTNN của $A$ là $1$. Giá trị này đạt tại $x-4=0\Leftrightarrow x=4$
-------------------
$B=|3x-2|-5$
Vì $|3x-2|\geq 0$ với mọi $x$
$\Rightarrow B=|3x-2|-5\geq 0-5=-5$
Vậy $B_{\min}=-5$. Giá trị này đạt tại $3x-2=0\Leftrightarrow x=\frac{2}{3}$
$C=5-(2x-1)^4$
Vì $(2x-1)^4\geq 0$ với mọi $x$
$\Rightarrow C=5-(2x-1)^4\leq 5-0=5$
Vậy $C_{\max}=5$. Giá trị này đạt tại $2x-1=0\Leftrightarrow x=\frac{1}{2}$
----------------
$D=-3(x-3)^2-(y-1)^2-2021$
Vì $(x-3)^2\geq 0, (y-1)^2\geq 0$ với mọi $x,y$
$\Rightarrow D=-3(x-3)^2-(y-1)^2-2021\leq -3.0-0-2021=-2021$
Vậy $D_{\max}=-2021$. Giá trị này đạt tại $x-3=y-1=0$
$\Leftrightarrow x=3; y=1$
Trả lời câu hỏi nhanh giúp mình với mình đang cần gấp
Cảm ơn mọi người
Lời giải:
a)
Áp dụng BĐT Bunhiacopxky:
\((y-2x)^2\leq (16y^2+36x^2)(\frac{1}{16}+\frac{1}{9})=9.\frac{25}{144}\)
\(\Rightarrow \frac{-5}{4}\leq y-2x\leq \frac{5}{4}\Rightarrow \frac{15}{4}\leq y-2x+5\leq \frac{25}{4}\)
Vậy $A_{\min}=\frac{15}{4}$ và $A_{\max}=\frac{25}{4}$
b)
Áp dụng BĐT Bunhiacopxky:
\((2x-y)^2\leq (\frac{x^2}{4}+\frac{y^2}{9})(16+9)=25\)
\(\Rightarrow -5\leq 2x-y\leq 5\Leftrightarrow -7\leq 2x-y-2\leq 3\)
Vậy $B_{min}=-7; B_{\max}=3$
\(A=\left|x+5\right|+2019\)
\(\Rightarrow\left|x+5\right|\ge0\)
Dấu "=" xảy ra \(\Leftrightarrow x+5=0\Leftrightarrow x=-5\)
\(\Rightarrow A_{min}=2019\Leftrightarrow x=-5\)