Đặt \(a=\sqrt[3]{2-\sqrt{3}}+\sqrt[3]{2+\sqrt{3}}\) CM: \(\dfrac{64}{\left(a^2-3\right)^3}-3a\) là số nguyên.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a>0\)
Có \(a^3=2-\sqrt{3}+3\sqrt[3]{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}\left(\sqrt[3]{2-\sqrt{3}}+\sqrt[3]{2-\sqrt{3}}\right)+2+\sqrt{3}\)
\(\Leftrightarrow a^3=4+3a\)
\(\Leftrightarrow a\left(a^2-3\right)=4\)\(\Leftrightarrow a^2-3=\dfrac{4}{a}\)
\(\Leftrightarrow\dfrac{64}{\left(a^2-3\right)^3}=a^{.3}\)
\(\Leftrightarrow\dfrac{64}{\left(a^2-3\right)^3}-3a=a^2-3a=4\) là số nguyên.
Ta có : a= \(\sqrt[3]{2-\sqrt{3}}\) + \(\sqrt[3]{2+\sqrt{3}}\)
Suy ra a^3 = 3a +4 => (a^2 -3)a=4
<=> \(\left(\frac{4}{a^2-3}\right)^3\)= a^3 <=>\(\frac{64}{\left(a^2-a\right)^3}\) -3a = 4
mà 4 nguyên suy ra đpcm
a: Sửa đề: căn 6+2căn 5-căn 5
\(a=\dfrac{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}{\sqrt{5}+1-\sqrt{5}}=\dfrac{2}{1}=2\)
b: \(a^3=2-\sqrt{3}+2+\sqrt{3}+3a\)
=>a^3-3a-4=0
=>a^3-3a=4
\(\dfrac{64}{\left(a^2-3\right)^3}-3a=\left(\dfrac{4}{a^2-3}\right)^3-3a\)
\(=\left(\dfrac{a^3-3a}{a^2-3}\right)^3-3a=a^3-3a\)
=4
Chú ý tới đẳng thức : \(\left(x+y\right)^3=x^3+y^3+3xy\left(x+y\right)\)
\(a=\sqrt[3]{2-\sqrt{3}}+\sqrt[3]{2+\sqrt{3}}\)
\(\Leftrightarrow a^3=2-\sqrt{3}+2+\sqrt{3}+3\sqrt[3]{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}\cdot a\)
\(\Leftrightarrow a^3=4+3\sqrt[3]{4-3}\cdot a\)
\(\Leftrightarrow a^3=4+3a\)
\(\Leftrightarrow a^3-3a=4\)
Khi đó: \(\frac{64}{\left(a^3-3a\right)^3}-3=\frac{64}{4^3}-3=1-3=-2\)
Ta có đpcm.
p/s: Mình nghĩ đề sai và sửa luôn rồi, có gì bạn ib lại.
\(A=\left(\dfrac{\sqrt{2}+\sqrt{3}}{\sqrt{2}-\sqrt{3}}-\dfrac{\sqrt{2}-\sqrt{3}}{\sqrt{2}+\sqrt{3}}\right)\left(\dfrac{\sqrt{3}-1}{3\sqrt{2}-\sqrt{6}}\right)\)
\(=\dfrac{5+2\sqrt{6}-5+2\sqrt{6}}{-1}\cdot\dfrac{1}{\sqrt{6}}\)
=-4
Bạn xem lại đề bài. Thử giá trị $a$ vào biểu thức không thu đc số nguyên.