Tìm GTNN của biểu thức :
M=x^2+y^2-xy-x+y+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\dfrac{2x+y}{xy}+\dfrac{3}{2x+y}=\dfrac{2x+y}{2}+\dfrac{3}{2x+y}=\dfrac{3\left(2x+y\right)}{16}+\dfrac{3}{2x+y}+\dfrac{5}{16}\left(2x+y\right)\ge2\sqrt{\dfrac{3}{16}.3}+\dfrac{5}{16}.2\sqrt{2xy}=\dfrac{3}{2}+\dfrac{5}{4}=\dfrac{11}{4}\).
Đẳng thức xảy ra khi x = 1; y = 2.
\(M=\dfrac{2x+y}{xy}+\dfrac{3}{2x+y}=\dfrac{2x+y}{2}+\dfrac{3}{2x+y}\)
\(M=\dfrac{3\left(2x+y\right)}{16}+\dfrac{3}{2x+y}+\dfrac{5\left(2x+y\right)}{16}\ge2\sqrt{\dfrac{9\left(2x+y\right)}{16\left(2x+y\right)}}+\dfrac{5}{16}.2\sqrt{2xy}=\dfrac{11}{4}\)
Dấu "=" xảy ra khi \(\left(x;y\right)=\left(1;2\right)\)
Ta có:
\(M=\dfrac{2x+y}{xx}+\dfrac{3}{2x+y}=\dfrac{2x+y}{2}+\dfrac{3}{2x+y}\)
\(=\left(\dfrac{3}{8}\dfrac{2x+y}{2}+\dfrac{3}{2x+y}\right)+\dfrac{5}{8}\dfrac{2x+y}{2}\)
Có: \(\dfrac{3}{8}\dfrac{2x+y}{2}+\dfrac{3}{2x+y}\ge2\sqrt{\dfrac{3}{8}\dfrac{2x+y}{2}\dfrac{3}{2x+y}}=\dfrac{3}{2}\)
Dấu '=' xảy ra \(\Leftrightarrow\dfrac{3}{8}\dfrac{2x+y}{2}=\dfrac{3}{2x+y}\)
Có: \(\dfrac{5}{8}\dfrac{2x+y}{2}\ge\dfrac{5}{8}\sqrt{2xy}=\dfrac{5}{4}\)
Dấu '=' xảy ra \(\Leftrightarrow2x=y,xy=2\)
\(\Rightarrow M\ge\dfrac{3}{2}+\dfrac{5}{4}=\dfrac{11}{4}\)
Dấu '=' xảy ra \(\Leftrightarrow x=1,y=2\)
Vậy GTNN của M là \(\dfrac{11}{4}\Leftrightarrow x=1,y=2\)
\(M=\frac{x^2+y^2}{x-y}=\frac{\left(x-y\right)^2+2xy}{x-y}=x-y+\frac{2}{x-y}\ge2\sqrt{\left(x-y\right).\frac{2}{x-y}}=2\sqrt{2}\)
Đẳng thức xảy ra \(\Leftrightarrow\) \(\hept{\begin{cases}x>y\\xy=1\\x-y=\sqrt{2}\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=\frac{\sqrt{6}+\sqrt{2}}{2}\\y=\frac{\sqrt{6}-\sqrt{2}}{2}\end{cases}}\)
Đặt \(B=\frac{\left(x+y+1\right)^2}{xy+x+y}\)
Ta có bđt sau \(\left(a+b+c\right)^2\ge3\left(ab+bc+ac\right)\) tự chứng mình nha
Áp dụng \(a=x,b=y,c=1\)
Ta có : \(B=\frac{\left(x+y+1\right)^2}{xy+x+y}\ge3\)
Ta có : \(A=\frac{1}{B}+B=\frac{1}{B}+\frac{B}{9}+\frac{8B}{9}\ge\frac{2}{3}+\frac{8}{3}=\frac{10}{3}\)
Dấu " = " xảy ra khi \(x=y=1\)
Với y = 0 ta có: \(x^2=\frac{1}{2}\)=> M = 1/2 (1)
Với y khác 0
Ta có: \(M=x^2-xy+y^2=\frac{x^2-xy+y^2}{2x^2-xy+y^2}=\frac{\left(\frac{x}{y}\right)^2-\frac{x}{y}+1}{2\left(\frac{x}{y}\right)^2-\frac{x}{y}+1}\)
Đặt: \(\frac{x}{y}=t\)
Ta có: \(M=\frac{t^2-t+1}{2t^2-t+1}\Leftrightarrow\left(2M-1\right)t^2+\left(1-M\right)t+M-1=0\)(1)
+) Nếu 2M - 1 = 0 <=> M = 1/2 (2)
khi đó: t = 1
+) Nếu M khác 1/2
(1) có \(\Delta=\left(1-M\right)^2-4\left(2M-1\right)\left(M-1\right)=-7M+10M-3\)
Để (1) có nghiệm thì \(\Delta\ge0\)<=> \(\frac{3}{7}\le M\le1\)(3)
Từ (1); (2); (3) ta có GTNN của M = 3/7
Dấu "=" xảy ra <=> t = 2 hay \(\frac{x}{y}=2\Leftrightarrow x=2y\)
Thay vào \(2x^2-xy+y^2=1.\) ta có: \(8y^2-2y^2+y^2=1.\)
<=> \(y=\pm\frac{1}{\sqrt{7}}\)
Với \(y=\frac{1}{\sqrt{7}}\Rightarrow x=\frac{2}{\sqrt{7}}\)
Với \(y=\frac{-1}{\sqrt{7}}\Rightarrow x=\frac{-2}{\sqrt{7}}\)
Kết luận vậy min M = 1 tại ( x ; y ) \(\in\left\{\left(\frac{2}{\sqrt{7}};\frac{1}{\sqrt{7}}\right);\left(\frac{-2}{\sqrt{7}};\frac{-1}{\sqrt{7}}\right)\right\}\)