Câu 17: Cho ABC có AB = AC và = 2 có dạng đặc biệt nào:A. Tam giác cân B. Tam giác đều C. Tam giác vuông D. Tam giác vuông cânCâu 18: Cho tam giác ABC vuông tại A, AB = 3cm, AC = 4cm. Độ dài cạnh BC là:A. 7cm B. 12,5cm C. 5cm D. Câu 19: Tam giác ABC có AB = 12cm, AC = 13cm, BC = 5cm. Khi đó vuông tại: A. Đỉnh A B. Đỉnh B C....
Đọc tiếp
Câu 17: Cho ABC có AB = AC và = 2 có dạng đặc biệt nào:
A. Tam giác cân B. Tam giác đều
C. Tam giác vuông D. Tam giác vuông cân
Câu 18: Cho tam giác ABC vuông tại A, AB = 3cm, AC = 4cm. Độ dài cạnh BC là:
A. 7cm B. 12,5cm C. 5cm D.
Câu 19: Tam giác ABC có AB = 12cm, AC = 13cm, BC = 5cm. Khi đó vuông tại:
A. Đỉnh A B. Đỉnh B C. Đỉnh C D. Tất cả đều sai
Câu 20: Cho tam giác ABC có AB = AC. Gọi M là trung điểm của BC. Khẳng định nào sau đây sai?
A. ABM = ACM B. ABM= AMC
C. AMB= AMC= 900 D. AM là tia phân giác CBA
Câu 21: Cho tam giác đều ABC độ dài cạnh là 6cm. Kẻ AH vuông góc với BC(H thuộc BC). Độ dài AH là:
A. cm B. 3cm C. cm D. cm
Câu 22: Cho ABC= DEF. Khi đó: .
A. BC = DF B. AC = DF
C. AB = DF D. góc A = góc E
Câu 23. Cho PQR= DEF, DF =5cm. Khi đó:
A. PQ =5cm B. QR= 5cm C. PR= 5cm D.FE= 5cm
Câu 24. Cho tam giác MNP cân tại M, . Khi đó,
A. B. C. D.
Câu 25 : Cho ABC= MNP biết thì:
A. MNP vuông tại P B. MNP vuông tại M
C. MNP vuông tại N D. ABC vuông tại A
hình bạn tự vẽ
a, nối D và E
Ta có: AD là tia p/g góc BAC ( gt ) => góc BAD = góc EAD
Xét tam giác ABD và tam giác AED:
+ AB = AE ( gt)
+ góc BAD = góc EAD (cmt)
+ AD là cạnh chung
=> Tam giác ABD = tam giác AED ( C-G-C) (1)
Từ (1) => góc ADB = góc ADE ( 2 góc tương ứng)
b, mà góc BAD = góc EAD ( cmt)
Góc KBD = góc ADB + góc BAD ( ĐL góc ngoài của tam giác)
Góc DEC = góc ADE + góc EAD ( ĐL góc ngoài của tam giác)
===> góc KBD = góc DEC
Từ (1) => BD = DE ( 2 cạnh tương ứng)
Xét tam giác KBD và tam giác CED:
+ góc KBD = góc DEC ( cmt)
+ BD = DE (cmt)
+ góc BDK = góc EDC ( đối đỉnh)
===> tam giác KBD = tam giác CED ( G-C-G)
==> KB = EC ( 2 cạnh tương ứng)
c, Nối K và C
Gọi giao điểm của AD và KC là P
Ta có: AB = AE ( gt)
KB= CE ( cmt)
AK = AB + BK
AC = AE + CE
==> AK = AC
Xét tam giác KAP và tam giác CAP:
+ AK = AC ( cmt)
+ góc KAP = góc CAP ( cmt)
+ AP là cạnh chung
=> tam giác KAP = tam giác CAP ( c-g-c)
==> góc APK = góc APC ( 2 góc tương ứng)
mà góc APK + góc APC = 180 độ ( kề bù)
====> góc APK = góc APC = \(\dfrac{180}{2}\)=90 độ
======> AD vuông góc với KC tại P
mà P thuộc AD, P thuộc KC, điểm P nằm giữa điểm K và C
=====> AD là dường trung trực của KC
nhớ dùng tất cả các nick bạn có tick cho mik nha