ước của số 2011
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi 1 ước nguyên tố bất kì của 1.2.3.4.......2011 - 1 là p
Nếu p \(\le\) 2011 thì 1.2.3.4.......2011 chia hết cho p
mà 1x2x3x.........x2011-1 chia hết cho p
=> 1 chia hết cho p (vô lí).
Vậy p > 2011
Có : 1 + 3 + 5 + ... + 2009 + 2011 = \(\frac{\left(2011+1\right)\left(\frac{2011-1}{2}+1\right)}{2}=\frac{2012}{2}.1006=1006.1006=1006^2\)
Vậy S là số chính phương
S có số các số hạng là:
\(\frac{2011-1}{2}+1=1006\)(số)
\(\Rightarrow S=\frac{1006.\left(1+2011\right)}{2}=1006.\frac{2012}{2}=1006.1006=1006^2\left(=1012036\right)\)
Do đó S là số chính phương.
Ta có:
\(1006^2=2^2.503^2\)
Vậy các ước nguyên của S sẽ là:
\(1;2;4;503;1006;2012;253009;506018;1012036;-1;-2;-4;\)
\(-503;-1006;-2012;-253009;-506018;-1012036\)
1 và 2011
Đó là số nguyên tố mà bạn ước phải là 1;-1;2011;-2011