K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 6 2017

b) x - 2xy + y = 0 

<=> 2x - 4xy + 2y = 0 

<=> 2x - 4xy + 2y - 1 = -1 

<=> (2x - 4xy) - (1 - 2y) = -1 

<=> 2x(1 - 2y) - (1 - 2y) = -1 

<=> (2x - 1)(1 - 2y) = - 1 

<=> 2x - 1 = -1 và 1 - 2y = 1 

hoặc 2x - 1 = 1 và 1 - 2y = -1

11 tháng 3 2018

a, \(\frac{a^2+a+3}{a+1}=\frac{a\left(a+1\right)+3}{a+1}=1+\frac{3}{a+1}\)

Để \(\frac{a^2+a+3}{a+1}\inℤ\) thì \(a+1\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)

Ta có bảng:

a+11-13-3
a0-22-4

Vậy....

b, x - 2xy + y = 0

<=> 2x - 4xy + 2y = 0

<=> 2x(1 - 2y) + 2y - 1 = -1

<=> 2x(1 - 2y) - (1 - 2y) = -1

<=> (2x - 1)(1 - 2y) = -1

ta có bảng:

2x-11-1
1-2y-11
x10
y10

Vậy...

10 tháng 3 2018

a, để phân số trên là số nguyên thì a^2+a+3 chia hết cho a+1

Mà a^2+a = a.(a+1) chia hết cho a+1

=> 3 chia hết cho a+1

=> a+1 thuộc ước của (3) = {+-1;+-3}

Đến đó bạn tự giải

b, => 2x-4xy+2y = 0

=> (2x-4xy)-(1-2y)+1 = 0

=> 2x.(1-2y)-(1-2y) = -1

=> (2x-1).(1-2y) = -1

Đến đó bạn dùng ước bội mà giải nha !

10 tháng 3 2018

a) Ta có \(\frac{a^2+a+3}{a+1}\)là số nguyên hay \(a^2+a+3⋮a+1\)

\(a.\left(a+1\right)+3⋮a+1\Rightarrow3⋮a+1\)

Do đó a + 1 thuộc ước của 3

Mà \(Ư\left(3\right)=\left\{1;-1;3;-3\right\}\)

\(\Rightarrow a+1\in\left\{1;-1;3;-3\right\}\Rightarrow a\in\left\{0;-2;2;-4\right\}\)

Vậy....

b)Ta có \(x-2xy+y=0\)

\(\Rightarrow x.\left(1-2y\right)+y=0\Rightarrow x.\left(1-2y\right)-0,5.\left(1-2y\right)+0,5=0\)

... đến đây tịt , nếu giải tiếp thì sẽ ra ước của 0,5 

23 tháng 12 2016

a)\(\frac{a^2+a+3}{a+1}=\frac{a\left(a+1\right)+3}{a+1}=\frac{a\left(a+1\right)}{a+1}+\frac{3}{a+1}=a+\frac{3}{a+1}\in Z\)

\(\Rightarrow3⋮a+1\)

\(\Rightarrow a+1\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)

\(\Rightarrow a\in\left\{0;-2;2;-4\right\}\)

b) Phần 1

\(x-2xy+y=0\)

\(\Rightarrow2x-4xy+2y=0\)

\(\Rightarrow2x-4xy+2y-1=-1\)

\(\Rightarrow2x\left(1-2y\right)-\left(1-2y\right)=-1\)

\(\Rightarrow\left(2x-1\right)\left(1-2y\right)=-1\)

Lập bảng xét Ư(-1)={1;-1}

Phần 2:

\(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}\)

\(\Leftrightarrow\frac{x}{y+z+t}+1=\frac{y}{z+t+x}+1=\frac{z}{t+x+y}+1=\frac{t}{x+y+z}+1\)

\(\Leftrightarrow\frac{x+y+z+t}{y+z+t}=\frac{y+z+t+x}{z+t+x}=\frac{z+t+x+y}{t+x+y}=\frac{t+x+y+z}{x+y+z}\)

+)XÉt \(x+y+z+t\ne0\) suy ra \(x=y=z=t\), Khi đó \(P=1+1+1+1=4\)

+)Xét \(x+y+z+t=0\) suy ra x+y=-(z+t); y+z=-(t+x); (z+t)=-(x+y); (t+x)=-(y+z)

Khi đó \(P=\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)=-4\)

Vậy P có giá trị nguyên 

16 tháng 8 2023

bạn ơi hình như đề bạn viết nó có sai sai sao ý =(

22 tháng 9 2017

a) \(2xy^2+x+y+1=x^2+2y^2+xy\)

\(\Leftrightarrow2xy^2+x+y-x^2-2y^2-xy=-1\)

\(\Leftrightarrow2xy^2-2y^2+x-x^2+y-xy=-1\)

\(\Leftrightarrow2y^2\left(x-1\right)-x\left(x-1\right)-y\left(x-1\right)=-1\)

\(\Leftrightarrow\left(x-1\right)\left(2y^2-x-y\right)=-1\)

Để x nguyên thì x - 1 nguyên. Vậy thì \(x-1\in\left\{-1;1\right\}\)

Với x = 1, ta có \(2y^2-1-y=-1\Rightarrow2y^2-y=0\Rightarrow\orbr{\begin{cases}y=0\left(n\right)\\y=\frac{1}{2}\left(l\right)\end{cases}}\)

Với x = -1, ta có \(2y^2+1-y=1\Rightarrow2y^2+y=0\Rightarrow\orbr{\begin{cases}y=0\left(n\right)\\y=\frac{-1}{2}\left(l\right)\end{cases}}\)

Vậy phương trình có nghiệm (x; y) = (1; 0) hoặc (-1; 0).

27 tháng 2 2020

Đề bài là số nguyên n hay x thế?

a) A là phân số khi \(n-5\ne0\)

\(\Rightarrow n\ne-5\)

Vậy n là số nguyên bất kì khác -5.

b) Để A là số nguyên thì \(n+2⋮n-5\)

\(\Rightarrow n-5+7⋮n-5\)

Vì \(n-5⋮n-5\)

\(\Rightarrow7⋮n-5\)

\(\Rightarrow n-5\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)

...

Đến đây bạn tự lập bảng xét các giá trị của n nhé!

Học tốt!

#Huyền#

27 tháng 2 2020

N bạn ạ mình ghi nhầm