K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2022

Nội tiếp chắn nửa đg tròn hả bạn :^?

 

a: Xét tứ giác MAOB có \(\widehat{MAO}+\widehat{MBO}=180^0\)

nên MAOB là tứ giác nội tiếp

Xét (O) có

MA là tiếp tuyến

MB là tiếp tuyến

Do đó: MA=MB

mà OA=OB

nên OM là đường trung trực của AB

=>OM⊥AB

b: Xét ΔMAC và ΔMDA có 

\(\widehat{MAC}=\widehat{MDA}\)

\(\widehat{AMC}\) chung

Do đó: ΔMAC∼ΔMDA
SUy ra: MA/MD=MC/MA

hay \(MA^2=MC\cdot MD\left(1\right)\)

Xét ΔOAM vuông tại A có AH là đường cao

nên \(MH\cdot MO=MA^2\left(2\right)\)

Từ (1) và (2) suy ra \(MC\cdot MD=MH\cdot MO\)

15 tháng 7 2021

ACBD nội tiếp \(\Rightarrow\angle ACD=\angle ABD=\angle HBD\)

Xét \(\Delta MAC\) và \(\Delta MDA:\) Ta có: \(\left\{{}\begin{matrix}\angle MAC=\angle MDA\\\angle DMAchung\end{matrix}\right.\)

\(\Rightarrow\Delta MAC\sim\Delta MDA\left(g-g\right)\Rightarrow\dfrac{MA}{MD}=\dfrac{MC}{MA}\Rightarrow MA^2=MC.MD\)

Vì MA,MB là tiếp tuyến \(\Rightarrow\Delta MAB\) cân tại M có MO là phân giác \(\angle AMB\)

\(\Rightarrow MO\bot AB\)

tam giác MAO vuông tại A có AH là đường cao \(\Rightarrow MA^2=MH.MO\)

\(\Rightarrow MH.MO=MC.MD\Rightarrow\dfrac{MH}{MD}=\dfrac{MC}{MO}\)

Xét \(\Delta MHC\) và \(\Delta MDO:\) Ta có: \(\left\{{}\begin{matrix}\dfrac{MH}{MD}=\dfrac{MC}{MO}\\\angle DMOchung\end{matrix}\right.\)

\(\Rightarrow\Delta MHC\sim\Delta MDO\left(c-g-c\right)\Rightarrow\angle MHC=\angle MDO\Rightarrow CHOD\) nội tiếp

Ta có: \(\angle BHD=90-\angle DHO=90-\angle DCO\) (CHOD nội tiếp)

\(=90-\dfrac{180-\angle COD}{2}=90-90+\dfrac{1}{2}\angle COD=\angle CAD\)

Xét \(\Delta BHD\) và \(\Delta CAD:\) Ta có: \(\left\{{}\begin{matrix}\angle CAD=\angle BHD\\\angle ACD=\angle HBD\end{matrix}\right.\)

\(\Rightarrow\Delta BHD\sim\Delta CAD\left(g-g\right)\Rightarrow\dfrac{BH}{CA}=\dfrac{BD}{CD}\Rightarrow BH.CD=BD.CA\)

undefined

16 tháng 7 2021

Cảm ơn ạ 

khó quá mk ko bít sorry!!!
547568769

9 tháng 5 2016

Xin lỗi bạn!

Mk mới học lớp 8 thôi ak!

Chúc bạn có câu trả lời sớm nha!

Kb nhá ^_^

cho đường tròn O và điểm M nằm ngoài đường tròn O . từ điểm M vẽ 2 tiếp tuyến MA ,MB của đường tròn . từ điểm M vẽ 2 tiếp tuyến MA , MB của đường tròn O .gọi H là giao điểm của MO và AB .Qua M vẽ cát tuyến MCD của đường tròn O (, D thuộc đường tròn O) sao cho đường thẳng MD cắt đoạn thẳng HB . gọi I là trung điểm dây cung CDA/ chứng minh OI vuông góc CD tại I và tứ giác MAOI nội tiếpB/ chứng minh...
Đọc tiếp

cho đường tròn O và điểm M nằm ngoài đường tròn O . từ điểm M vẽ 2 tiếp tuyến MA ,MB của đường tròn . từ điểm M vẽ 2 tiếp tuyến MA , MB của đường tròn O .gọi H là giao điểm của MO và AB .Qua M vẽ cát tuyến MCD của đường tròn O (, D thuộc đường tròn O) sao cho đường thẳng MD cắt đoạn thẳng HB . gọi I là trung điểm dây cung CD
A/ chứng minh OI vuông góc CD tại I và tứ giác MAOI nội tiếp

B/ chứng minh MA2 =MC.MD và tứ giác OHCD nội tiếp
C/ trên cung nhỏ AD lấy điểm N sao cho DN=BD . qua C vẽ đường thẳng song song với DN cắt đường thẳng MN tại E và cũng qua C vẽ đường thẳng song song viws BD cắt cạnh A tại F . chứng minh CEF cân
câu này hơi dài , cảm ơn mấy bạn vì công đọc , sai thì thôi, đúng thì ok  , nhưng cảm ơn mn vì đọc cái bài dài này nhá :))

0

b: Xét ΔMAC và ΔMDA có

góc MAC=góc MDA

góc AMC chung

=>ΔMAC đồng dạng với ΔMDA

=>MA^2=MC*MD=MH*MO

=>MC/MO=MH/MD

=>ΔMCH đồng dạng với ΔMOD

=>góc MCH=góc MOD

=>góc HOD+góc HCD=180 độ

=>HODC nội tiếp

26 tháng 4 2023

loading...

a, Vì MA, MB là tiếp tuyến của (O) nên \(\angle MAO=\angle MBO=90^o\)

Suy ra: tứ giác OAMB nội tiếp

b, Xét ΔIAC và ΔIBA, có: ∠I chung, \(\angle IAC=\angle IBA\)

\(\Rightarrow \Delta IAC\sim \Delta IBA(g.g) \Rightarrow \dfrac{IA}{IC}=\dfrac{IB}{IA} \Rightarrow IA^2=IB.IC\)

c, Vì I là trung điểm MA nên \(IM^2=IA^2=IB.IC\Rightarrow \dfrac{IC}{IM}=\dfrac{IM}{IB} \)

\(\Rightarrow \Delta ICM \sim \Delta IMB (c.g.c) \Rightarrow \angle IMC=\angle IBM \) hay \(\angle CMA=\angle IBM\)

a: góc OAM+góc OBM=180 độ

=>OAMB nội tiếp

b: Xet ΔIAC và ΔIBA có

góc IAC=góc IBA

góc AIC chung

=>ΔIAC đồng dạng với ΔIBA

=>IA^2=IB*IC