chung minh 7^2015 - 43 chia het cho 100 can gap
ai giup minh tick cho
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:(n-3)(n+3)-(n-7)(n-3) (1)
=(n-3)(n+3-n+7)
=10(n-3)
Vậy PT(1) chia hết cho 10
\(\left(n-3\right)\left(n+3\right)-\left(n-7\right)\left(n-3\right)=\left(n-3\right)[n+3-\left(n-7\right)]\)
\(=\left(n-3\right)\left(n+3-n+7\right)=\left(n-3\right)\cdot10⋮10\)(ĐPCM)
\(A=3^1+3^4+3^7+...+3^{100}\)
\(A=\left(3^1+3^4+3^7+3^{10}\right)+...+\left(3^{91}+3^{94}+3^{97}+3^{100}\right)\)
\(A=\left(3^1+3^4+3^7+3^{10}\right)+...+3^{96}.\left(3^1+3^4+3^7+3^{10}\right)\)
\(A=\left(3^1+3^4+3^7+3^{10}\right).\left(1+...+3^{96}\right)\)
\(A=61320.\left(1+...+3^{96}\right)\)
\(A=7665.8.\left(1+...+3^{96}\right)⋮8\)
\(\Rightarrow A=3^1+3^4+3^7+...+3^{100}⋮8\)
Câu 1: A = ( 3 + 3² + 3^5 + 3^7 ) + ( 3^9 + 3^11 + 3^13 + 3^15 ) + . + ( 3^1991 + 3^1989 + 3^1987 + 3^1985 )
A = 2442 + 3^9( 3 + 3² + 3^5 + 3^7 ) + .......... + 3^1985( 3 + 3² + 3^5 + 3^7 )
A = 2442 + 3^9 . 2442 + ........... + 3^1985.2442
Do 2442 chia hết cho 41 => A chia hết cho 41
( Dơn giản là cxư nhóm 4 số hạng liền nhau của dãy vào với nhau )
a) 10232 + 2
= 1000....0 + 2
(232 số 0)
= 1000...02
(231 số 0)
=> tổng các chữ số của 10232 + 2 là: 1 + 0 + 0 + 0 + ... + 0 + 2 = 3 chia hết cho 3
231 số 0
=> 10232 + 2 chia hết cho 3
b) 1078 + 8
= 1000...0 + 8
78 số 0
= 1000...08
77 số 0
=> tổng các chữ số của 1078 + 8 là: 1 + 0 + 0 + 0 + ... + 0 + 8 = 9 chia hết cho 9
77 số 0
=> 1078 + 8 chia hết cho 9
Ủng hộ mk nha ^_-
a) Ta co 10232 = 102 * (102)115
Ta co 102 đồng dư với 20 = 3*6+2 nên 102 đồng dư với 2
102 đồng dư với 20 = 3*6+2 nên 102 đồng dư với 2 do đó (102)115 đồng dư với 2
vay 102 * (102)115 hay 10232 đồng dư với 2*2=4 đồng dư với 1 suy ra 10232 + 2 chia hết cho 3
Gọi số cần tìm là : \(\overline{abcd}\) (a, b, c và d khác nhau)
Để \(\overline{abcd}\)chia hết cho cả 2 và 5 thì d=0
Thay d=0, được \(\overline{abc0}⋮3\)
Mà \(\overline{abc0}\)là số tự nhiên nhỏ nhất có 4 chữ số
\(\Rightarrow a=1,b=2\)
Thay vào, được : \(\overline{12c0}⋮3\Rightarrow c=3\)
\(\Rightarrow\overline{abcd}=1230\)
Vậy số đó là 1230.
Số tự nhiên nhỏ nhất có 4 chữ số khác nhau chia hết cho cả 2 ;3 và 5 là 1230 nhé bạn
Có \(7\equiv-1\left(mod4\right)\)
\(\Rightarrow7^{2015}\equiv-1\left(mod4\right)\)
\(43\equiv-1\left(mod4\right)\)
\(\Rightarrow7^{2015}-43\equiv-1-\left(-1\right)=0\left(mod4\right)\)(1)
Lại có
\(7^2\equiv-1\left(mod25\right)\)
\(\Rightarrow\left(7^2\right)^{1007}\equiv-1\left(mod25\right)\)
\(\Rightarrow7^{2014}.7\equiv-7\left(mod25\right)\)
\(43\equiv-7\left(mod25\right)\)
\(\Rightarrow7^{2015}-43\equiv-7-\left(-7\right)=0\left(mod25\right)\)(2)
Từ (1) và (2) => Bt chia hết cho 4 , 25
=> chia hết cho 100
Ta có: 7^4 đồng dư với 1 ( mod 100)
=> 7^4^503 đồng dư với 1 ( mod 100)
=> 7^2012 x 7^3 đồng dư với 1 x 7^3 ( mod 100)
=> 7^2015 đồng dư với 7^3 đồng dư với 43 ( mod 100)
=> 7^2015 - 43 chi hết cho 100
Vậy 7^2015 - 43 chia hết cho 100 ( Đpcm)