Cho các số thực x,y,z thỏa mãn \(0\le x,y,z\le2\) và \(x+y+z=5\). Tìm GTNN của \(A=\sqrt{x}+\sqrt{y}+\sqrt{z}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Không mất tính tổng quát, ta có thể giả sử \(x\ge y\ge z\).Khi đó:
\(5=x+y+z\le3x\le6\Leftrightarrow\frac{5}{3}\le x\le2\Rightarrow\left(x-1\right)\left(2-x\right)\ge0\)(*)
Mặt khác, vì \(0\le y,z\le2\)nên \(\left(y-2\right)\left(z-2\right)\ge0\Leftrightarrow yz\ge2\left(y+z\right)-4\)
\(\Leftrightarrow yz\ge2\left(5-x\right)-4=6-2x\)
Do đó:
\(\Leftrightarrow A\ge\sqrt{x}+\sqrt{3-x+2\sqrt{2}\sqrt{3-x}+2}\)
\(=\sqrt{x}+\sqrt{\left(\sqrt{3-x}+\sqrt{2}\right)^2}=\sqrt{x}+\sqrt{3-x}+\sqrt{2}\)
Vì \(\left(\sqrt{x}+\sqrt{3-x}\right)^2=x+2\sqrt{x\left(3-x\right)}+3-x\)
\(=3+2\sqrt{3x-x^2}=3+2\sqrt{\left(x-1\right)\left(2-x\right)+2}\ge3+2\sqrt{2}\)
\(=\left(\sqrt{2}+1\right)^2\)(vì \(\left(x-1\right)\left(2-x\right)\ge0\)theo (*)) nên \(\sqrt{x}+\sqrt{3-x}\ge\sqrt{2}+1\)
Vậy \(A\ge2\sqrt{2}+1\)
Đẳng thức xảy ra khi \(\hept{\begin{cases}0\le x,y,z\le2;x+y+z=5\\\left(x-1\right)\left(2-x\right)=0\\yz=6-2x\end{cases}}\Leftrightarrow x=y=2;z=1\)
Vậy giá trị nhỏ nhất của A là \(2\sqrt{2}+1\)đạt được khi \(\left(x,y,z\right)=\left(2,2,1\right)\)và các hoán vị
Ta có: \(2\sqrt{2}-1< \sqrt{5}\)
\(A^2=x+y+z+2\left(\sqrt{xy}+yz+zx\right)=5+2\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)\ge5\)
\(\Rightarrow A\ge\sqrt{5}>2\sqrt{2}-1\Rightarrow A-2\sqrt{2}+1>0\)
\(0\le x;y;z\le2\Rightarrow0\le\sqrt{x};\sqrt{y};\sqrt{z}\le\sqrt{2}\)
\(\Rightarrow\left(\sqrt{x}-\sqrt{2}\right)\left(\sqrt{y}-\sqrt{2}\right)+\left(\sqrt{y}-\sqrt{2}\right)\left(\sqrt{z}-\sqrt{2}\right)+\left(\sqrt{x}-\sqrt{2}\right)\left(\sqrt{z}-\sqrt{2}\right)\ge0\)
\(\Leftrightarrow\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\ge2\sqrt{2}\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)-6=2\sqrt{2}A-6\)
\(\Rightarrow A^2\ge5+2\left(2\sqrt{2}A-6\right)\)
\(\Leftrightarrow A^2-4\sqrt{2}A+7\ge0\)
\(\Leftrightarrow\left(A-2\sqrt{2}+1\right)\left(A-2\sqrt{2}-1\right)\ge0\)
\(\Leftrightarrow A-2\sqrt{2}-1\ge0\)
\(\Rightarrow A\ge2\sqrt{2}+1\)
Dấu "=" xảy ra khi \(\left(x;y;z\right)=\left(1;2;2\right)\) và hoán vị
Ta có :
\(A=\sqrt{\left(x-y\right)^2}+\sqrt{\left(y-z\right)^2}+\sqrt{\left(z-x\right)^2}\)
\(=\left|x-y\right|+\left|y-z\right|+\left|z-x\right|\)
không mất tính tổng quát, giả sử \(0\le z\le y\le x\le3\)
Khi đó : A = x - y + y - z + x - z = 2x - 2z
vì \(0\le z\le x\le3\)nên : \(2x\le6;-2z\le0\Rightarrow2x-2z\le6\)
\(\Rightarrow A\le6\)
Vậy GTNN của A là 6 khi x = 3 ; z = 0 và y thỏa mãn \(0\le y\le3\)và các hoán vị
Ta có: \(0\le x,y,z\le2\) và \(x+y+z=5\)
\(\Leftrightarrow\left[{}\begin{matrix}x=y=2\\z=1\end{matrix}\right.\)$;$\(\left[{}\begin{matrix}x=1\\y=z=2\end{matrix}\right.;\left[{}\begin{matrix}x=z=2\\y=1\end{matrix}\right.\)
\(\rightarrow A=\sqrt{x}+\sqrt{y}+\sqrt{z}\) có $GTNN$ của $A$ là \(\sqrt{2}+\sqrt{2}+\sqrt{1}=2\sqrt{2}+1\)
bn tìm đề thi hsg tỉnh thanh hóa lớp 9 năm nào đó là thấy
bài này dài,ngại làm
đặt là được
Câu hỏi của Hoàng Gia Anh Vũ - Toán lớp 9 - Học toán với OnlineMath
Ta có : \(A^2=\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}+\frac{2x\sqrt{y}}{\sqrt{z}}+\frac{2y\sqrt{z}}{\sqrt{x}}+\frac{2z\sqrt{x}}{\sqrt{y}}\)
Áp dụng BĐT Cô-si cho 4 số dương,ta có ;
\(\frac{x^2}{y}+\frac{x\sqrt{y}}{\sqrt{z}}+\frac{x\sqrt{y}}{\sqrt{z}}+z\ge4\sqrt[4]{\frac{x^2.x^2.y.z}{yz}}=4x\)
Tương tự : ....
\(\Rightarrow A^2\ge4\left(x+y+z\right)-\left(x+y+z\right)=3\left(x+y+z\right)\ge36\)
\(\Rightarrow A\ge6\)
Dấu "=" xảy ra khi x = y = z = 4
Đặt \(\left(\sqrt{x};\sqrt{y};\sqrt{z}\right)\rightarrow\left(a;b;c\right)\)
Khi đó \(a^2+b^2+c^2\ge12\) ta cần tìm GTNN của \(A=\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\)
\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}+a+b+c\ge2\sqrt{\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)\left(a+b+c\right)}\)
Ta có:\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^2b+b^2c+c^2a}\)
Mà \(\left(a^2+b^2+c^2\right)\left(a+b+c\right)\ge3\left(a^2+b^2+c^2\right)\) ( cơ bản )
\(\Rightarrow\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}+a+b+c\ge2\sqrt{3\left(a^2+b^2+c^2\right)}=12\)
\(\Rightarrow\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge12-\left(a+b+c\right)\)
Chứng minh được \(a+b+c\le6\) là OKE nhưng có vẻ không ổn lắm :))
Lời giải:
Ta thấy, với mọi $x,y,z$ là số thực thì:
$(x-y+z)^2\geq 0$
$\sqrt{y^4}\geq 0$
$|1-z^3|\geq 0$
$\Rightarrow (x-y+z)^2+\sqrt{y^4}+|1-z^3|\geq 0$ với mọi $x,y,z$
Kết hợp $(x-y+z)^2+\sqrt{y^4}+|1-z^3|\leq 0$
$\Rightarrow (x-y+z)^2+\sqrt{y^4}+|1-z^3|=0$
Điều này xảy ra khi: $x-y+z=y^4=1-z^3=0$
$\Leftrightarrow y=0; z=1; x=-1$
Không mất tính tổng quát, giả sử: \(x\ge y\ge z\). Khi đó:
\(5=x+y+z\le3x\le6\Rightarrow\frac{5}{3}\le x\le2\Rightarrow\left(x-1\right)\left(2-x\right)\ge0\)(*)
Mặt khác, vì \(0\le y,z\le2\)nên \(\left(y-2\right)\left(z-2\right)\ge0\Leftrightarrow yz\ge2\left(y+z\right)-4\)
\(\Leftrightarrow yz\ge2\left(5-x\right)-4=6-2x\)
Do đó: \(A=\sqrt{x}+\sqrt{y}+\sqrt{z}=\sqrt{x}+\sqrt{y+z+2\sqrt{yz}}\)
\(\ge\sqrt{x}+\sqrt{5-x+2\sqrt{6-2x}}=\sqrt{x}+\sqrt{3-x+2\sqrt{2}.\sqrt{3-x}+2}\)
\(=\sqrt{x}+\sqrt{\left(\sqrt{3-x}+\sqrt{2}\right)^2}=\sqrt{x}+\sqrt{3-x}+\sqrt{2}\)
Ta có: \(\left(\sqrt{x}+\sqrt{3-x}\right)^2=x+2\sqrt{x\left(3-x\right)}+3-x=3+2\sqrt{3x-x^2}\)
\(=3+2\sqrt{\left(x-1\right)\left(2-x\right)+2}\ge3+2\sqrt{2}=\left(1+\sqrt{2}\right)^2\)(theo (*))
Do đó \(\sqrt{x}+\sqrt{3-x}\ge1+\sqrt{2}\)
Vậy \(A\ge2\sqrt{2}+1\)
Đẳng thức xảy ra khi \(\hept{\begin{cases}0\le x,y,z\le2;x+y+z=5\\\left(x-1\right)\left(2-x\right)=0\\yz=6-2x\end{cases}}\Leftrightarrow x=y=2;z=1\)
Vậy giá trị nhỏ nhất của A là \(2\sqrt{2}+1\), đạt được khi \(\left(x,y,z\right)=\left(2,2,1\right)\)và các hoán vị.
•๖ۣۜIηεqυαℓĭтĭεʂ•ッᶦᵈᵒᶫ ngu mak đòi lm solo toán ko :PP