K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

A B C D E K

a) Xét tam giác ABC và tam giác AED có :

 \(\widehat{A}\)chung

\(\frac{AB}{AE}=\frac{AC}{AD}\left(=\frac{1}{2}\right)\)

Suy ra tam giác ABC ~ tam giác AED ( c-g-c )

b) Từ tam giác ABC ~ tam giác ADE (cmt) ta có :

\(\frac{BC}{ED}=\frac{AB}{AE}=\frac{1}{2}\Rightarrow ED=2BC=2\cdot7=14\left(cm\right)\)

c) Xét tam giác ADC và tam giác AEB có :

\(\widehat{A}\)chung

\(\frac{AD}{AE}=\frac{AC}{AB}\left(=\frac{4}{3}\right)\)

Suy ra tam giác ADC ~ tam giác AEB ( c-g-c )

\(\Rightarrow\widehat{BDK}=\widehat{CEK}\)

Xét tam giác KCE và tam giác KDB có :

\(\widehat{BKD}=\widehat{CKE}\)(2 góc đối đỉnh)

\(\widehat{BDK}=\widehat{CEK}\left(cmt\right)\)

Suy ra tam giác KCE ~ tam giác KDB ( g-g )

Từ tam giác ABC ~ tam giác AED (cmt) suy ra \(\widehat{ABC}=\widehat{AED}\)

Từ tam giác KCE ~ tam giác KDB (cmt) suy ra \(\widehat{KBD}=\widehat{KCE}\)

Ta có \(\widehat{CDE}=180"-\widehat{CED}-\widehat{DCE}=180"-\widehat{ABC}-\widehat{DBK}\)(1)

Lại có \(\widehat{CBE}=180"-\widehat{ABC}-\widehat{DBK}\)(2)

Từ (1) và (2) suy ra \(\widehat{CBE}=\widehat{CDE}\)

\(\RightarrowĐPCM\)

8 tháng 2 2019

123456789

6 tháng 3 2022

Sửa đề: Tam giác ABC vuông tại A. Câu c. C/m IB.AD=IC.AE

a.

Ta có:

\(\dfrac{AE}{AB}=\dfrac{6}{15}=\dfrac{2}{5};\dfrac{AD}{AC}=\dfrac{8}{20}=\dfrac{2}{5}\)

\(\Rightarrow\dfrac{AE}{AB}=\dfrac{AD}{AC}\)

Xét tam giác ABC và tam giác AED,có:

\(\dfrac{AE}{AB}=\dfrac{AD}{AC}\) ( cmt )

\(\widehat{A}:chung\)

Vậy tam giác ABC dồng dạng tam giác AED ( c.g.c )

b. 

Áp dụng định lý pitago vào tam giác vuông ABC, có:

\(BC^2=AB^2+AC^2\)

\(\Rightarrow BC=\sqrt{15^2+20^2}=\sqrt{625}=25cm\)

Ta có: tam giác ABC dồng dạng tam giác AED ( c.g.c )

\(\Rightarrow\dfrac{AD}{AC}=\dfrac{DE}{BC}\)

\(\Leftrightarrow\dfrac{2}{5}=\dfrac{DE}{25}\) 

\(\Leftrightarrow5DE=50\)

\(\Leftrightarrow DE=10cm\)

c.Áp dụng t/c đường phân giác góc A, ta có:

\(\dfrac{AB}{AC}=\dfrac{IB}{IC}\)

Mà \(\dfrac{AB}{AC}=\dfrac{AE}{AD}\) ( 2 tam giác đồng dạng )

\(\Rightarrow\dfrac{AE}{AD}=\dfrac{IB}{IC}\)

\(\Leftrightarrow IB.AD=IC.AE\)

6 tháng 3 2022

bạn kiểm tra lại đề nhé 

 

11 tháng 3 2023

Ta có AB/AE = AC/AF
      <=> 6/4=9/6=3/2
 AEF và ABC chung góc A 
=> AEF và ABC đồng dạng "cạnh góc cạnh "
 b) BC =3x3/2=4,5cm


 

11 tháng 3 2023

A B C E F 3

`a)` Ta có: `(AE)/(AB) = 4/6 = 2/3`

`(AF)/(AC) = 6/9 = 2/3`

`=>  (AE)/(AB) = (AF)/(AC)`

Xét `ΔAEF` và `ΔABC` có: 

`hat{A}` chung

`(AE)/(AB) = (AF)/(AC)`

`=> ΔAEF ∼ ΔABC (c - g - c) ` (đpcm)

`b) ` Theo `a) ΔAEF ∼ ΔABC `

`=> (EF)/(BC) =  (AF)/(AC)`

`=> 3/(BC) = 2/3`

`=> BC = 3 : 2/3 = 9/2`

Vậy `BC = 9/2cm`