Cho tam giác ABC , đường phân giác AD . Trên đoạn thẳng AD lấy điểm E và F sao cho \(\widehat{ABE}=\widehat{CBF}\). Chứng minh rằng \(\widehat{ACE}=\widehat{BCF}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lần lượt vẽ H, K đối xứng với E, F qua AC, BC.
+) AC là đường trung trực của đoạn thẳng EH nên \(\widehat{HCE}=2\widehat{ACE}\)(*)
+) BC là đường trung trực của đoạn thẳng FK nên \(\widehat{FCK}=2\widehat{BCF}\)(**)
A thuộc đường trung trực của IE và EH nên AI = AE = AH
Suy ra tam giác AIH cân tại A mà AD là phân giác của góc A nên AD là trung trực của IH, do đó FI = FH (1)
Xét \(\Delta FBI\)và \(\Delta KBE\)có:
BF = BK (B thuộc đường trung trực của FK)
\(\widehat{IBF}=\widehat{EBK}\)(do \(\widehat{ABE}=\widehat{CBF}\Rightarrow\widehat{IBE}=\widehat{KBF}\Rightarrow\widehat{IBF}=\widehat{EBK}\))
BI = BE (B thuộc đường trung trực của IE)
Do đó \(\Delta FBI\)\(=\Delta KBE\left(c-g-c\right)\)
\(\Rightarrow EK=FI\)(hai cạnh tương ứng) (2)
Từ (1) và (2) suy ra EK = FH
Xét \(\Delta KCE\)và \(\Delta FCH\)có:
EC = HC (C thuộc đường trung trực của EH)
KE = FH (cmt)
CK = CF (C thuộc đường trung trực của FK)
Do đó \(\Delta KCE\)\(=\Delta FCH\left(c-c-c\right)\)
\(\Rightarrow\widehat{ECK}=\widehat{HCF}\)(hai góc tương ứng)
\(\Rightarrow\widehat{ECH}=\widehat{KCF}\)(***)
Từ (*), (**), (***) suy ra \(\widehat{ACE}=\widehat{BCF}\left(đpcm\right)\)
Gọi G là giao điểm 3 phân giác của tg ABC => BG là phân giác góc EBF,
và CG là phân giác góc ACB *
góc ABE = góc FBD = α
1. α = (góc ABC) / 2
=> E, F trùng với G => góc ACE = FCD
2. α < (góc ABC) / 2
AE / FD = S(BAE) / S(BFD) (2 tg cùng đường cao) = (AB*BE*sinα / 2) / (BF*BD*sinα / 2) =
= (AB / BD)*(BE / BF) = (AG / GD)*(BE / BF) ( tính chất đường phân giác)
= (AG / GD)*(EG / GF) (do * - tính chất đường phân giác) ***
AE / FD = S(CAE) / S(CFD) (2 tg cùng đường cao) =
(AC*CE*sin(ACE) / 2) / (CF*CD*sin(FCD) / 2) = (AC / CD)*(CE / CF)*(sin(ACE) / sin(FCD)) =
(AG / GD)*(CE / CF)*(sin(ACE) / sin(FCD)) (do * - tính chất đường phân giác) ****
từ ***, **** => (CE / CF)*(sin(ACE) / sin(FCD)) = EG / GF
Giả sử góc (ACE) > góc (FCD) => sin(ACE) / sin(FCD) > 1 => CE / CF < EG / GF *****
Mặt khác góc ECG = (góc ACB) / 2 - góc (ACE) < (góc ACB) / 2 - góc (FCD) = góc GCF
nên nếu ta kẻ phân giác CG' của góc ECF thì G' nằm trong đoạn GF. Theo đl đường
phân giác có CE / CF = EG' / FG' > EG / FG' > EG / GF, mâu thuẫn với *****
=> không thể có góc (ACE) > góc (FCD)
tương tự không thể có góc (ACE) < góc (FCD)
=> góc (ACE) = góc (FCD)
3. α > (góc ABC) / 2
=> góc ABF = góc EBD => từ phần 2 có góc ACF = góc ECD
=> góc ACE = góc FCD
bài này có trong sách nâng cao và phát triển 7 nha ba ba ba
*Bài này có nhiều cách làm, mỗi cách có 1 mình khác nhau. OLM đang lỗi nên không vẽ được hình. Bạn thông cảm*
- Giả sử E nằm giữa A và F
- Cách 1: Kéo dài BE cắt đường tròn ngoại tiếp \(\Delta\)AEC tại I
Ta có: \(\widehat{EIC}=\widehat{EAC}\) nên \(\Delta\)ABF~\(\Delta\)IBC
\(\Rightarrow\frac{BF}{BA}=\frac{BC}{BI}\) hay \(\frac{BF}{BC}=\frac{BA}{BI}\)
Lại có \(\widehat{ABE}=\widehat{CBF}\) nên \(\Delta\)ABI~\(\Delta\)FBC
Vậy \(\widehat{ACE}=\widehat{EIA}=\widehat{ACE}\)
- Cách 2: Gọi I, H lần lượt là điểm đối xứng của E qua AB và AC. K là điểm đối xứng F qua BC
Ta có \(\Delta AIH\) cân, AD là đường phân giác nên AD là đường trung trực đoạn IH
=> FI=FH (1)
\(\Delta FBI=\Delta KBE\left(cgc\right)\) nên FI=KE(2)
Từ (1) (2) => KE=FH
\(\Delta CEK=\Delta CHF\left(ccc\right)\)
=> \(\widehat{HCF}=\widehat{ECK}\) hay \(\widehat{ACE}=\widehat{BCF}\)
- Cách 3: Đặt \(\widehat{ABE}=\widehat{CBF}=\alpha;\widehat{ACE}=\beta;\widehat{BCF}=\gamma\)
Ta có: \(\frac{S_{ACE}}{S_{DCF}}=\frac{\frac{1}{2}\cdot AC\cdot CE\cdot\sin\beta}{\frac{1}{2}\cdot DC\cdot CF\cdot\sin\gamma}\left(3\right)\)
Mà \(\frac{S_{ACE}}{S_{DCF}}=\frac{S_{ABE}}{S_{DBF}}=\frac{\frac{1}{2}AB\cdot BE\cdot\sin\alpha}{\frac{1}{2}BD\cdot BF\cdot\sin\alpha}\left(4\right)\)
Từ (3) (4) => \(\frac{AC}{CD}\cdot\frac{CE}{CF}=\frac{\sin\beta}{\sin\gamma}=\frac{AB}{BD}\cdot\frac{BE}{BF}\)
Mặt khác \(\frac{AC}{CD}=\frac{AB}{BD};\frac{CE}{CF}=\frac{BE}{BF}\left(E;F\in AD\right)\)
Vậy \(\frac{\sin\beta}{\sin\gamma}=1\Rightarrow\widehat{ACE}=\widehat{BCF}\left(\beta+\gamma=180^o\right)\)
- Trường hợp F nằm giữa A và E, có \(\widehat{ABF}=\widehat{CBE}\), cũng làm tương tự
Lấy I,K,H sao cho AB là đường trung trực IE, BC là đường trung trực FK và AC là đường trung trực của EH.
\(\Delta CHF\) và \(\Delta CEK\)
IF = EK
HC = EC ;
KC = FC
=> \(\Delta CHF=\Delta CEK\left(ccc\right)\) (ccc)
=> \(\widehat{HCF}=\widehat{KCE}\)
=> \(\widehat{HCE}=\widehat{KCF}\)
mà \(\widehat{HCA}=\widehat{ECA}\);\(\widehat{KCB}=\widehat{FCB}\)
=> \(\widehat{ACE}=\widehat{BCF}\)