giải hệ phương trình:{\(\dfrac{2}{x+2}+\dfrac{1}{2y-3}=2\)
\(\dfrac{6}{x+2}-\dfrac{2}{2y-3}=1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`đk:x ne 2,y ne 1/2`
ĐẶt `a=1/(x-2),b=1/(2y-1)`
`hpt<=>` $\begin{cases}a+5b=3\\3a-b=1\\\end{cases}$
`<=>` $\begin{cases}3a+15b=9\\3a-b=1\\\end{cases}$
`<=>` $\begin{cases}16b=8\\a=3-5b\\\end{cases}$
`<=>` $\begin{cases}b=\dfrac12\\a=\dfrac12\\\end{cases}$
`<=>` $\begin{cases}x-2=2\\2y-1=2\\\end{cases}$
`<=>` $\begin{cases}x=4\\y=\dfrac32\\\end{cases}$
Đk: \(x\ne2;y\ne\dfrac{1}{2}\)
Đặt \(a=\dfrac{1}{x-2},b=\dfrac{1}{2y-1}\) (a,b khác 0)
Có hệ: \(\left\{{}\begin{matrix}a+5b=3\\3a-b=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a+5b=3\\15a-5b=5\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}16a=8\\3a-b=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{2}\\b=3a-1=\dfrac{1}{2}\end{matrix}\right.\)(tm)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{x-2}=\dfrac{1}{2}\\\dfrac{1}{2y-1}=\dfrac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=\dfrac{3}{2}\end{matrix}\right.\)(tm)
\(x^2y+2y+x=4xy< =>xy\left(x+3\right)=4xy< =>x+3=4< =>x=1\)
Thế x=1 vào 1 trong 2 phương trình => y=1
Có : \(\left\{{}\begin{matrix}\sqrt{x+1}+\dfrac{2y}{y+1}=2\\2\sqrt{x+1}-\dfrac{1}{y+1}=\dfrac{3}{2}\end{matrix}\right.\)
-> \(\left\{{}\begin{matrix}2\sqrt{x+1}+\dfrac{4y}{y+1}=4\\2\sqrt{x+1}-\dfrac{1}{y+1}=\dfrac{3}{2}\end{matrix}\right.\)
-> \(\left\{{}\begin{matrix}2\sqrt{x+1}+\dfrac{4y}{y+1}-2\sqrt{x+1}+\dfrac{1}{y+1}=4-\dfrac{3}{2}\\2\sqrt{x+1}-\dfrac{1}{y+1}=\dfrac{3}{2}\end{matrix}\right.\)
-> \(\left\{{}\begin{matrix}\dfrac{4y+1}{y+1}=\dfrac{5}{2}\\\sqrt{x+1}=\dfrac{\dfrac{3}{2}+\dfrac{1}{y+1}}{2}\end{matrix}\right.\)
-> \(\left\{{}\begin{matrix}2.\left(4y+1\right)=5.\left(y+1\right)\\\sqrt{x+1}=\dfrac{\dfrac{3}{2}+\dfrac{1}{y+1}}{2}\end{matrix}\right.\)
-> \(\left\{{}\begin{matrix}8y+2=5y+5\\\sqrt{x+1}=\dfrac{\dfrac{3}{2}+\dfrac{1}{y+1}}{2}\end{matrix}\right.\)
-> \(\left\{{}\begin{matrix}3y=3->y=1\\\sqrt{x+1}=\dfrac{\dfrac{3}{2}+\dfrac{1}{1+1}}{2}\end{matrix}\right.\)
-> \(\left\{{}\begin{matrix}y=1\\\sqrt{x+1}=1\end{matrix}\right.\)
-> \(\left\{{}\begin{matrix}y=1\\x=0\end{matrix}\right.\)
Vậy .........
ĐKXĐ: x # -1/2; y # -2
\(Đặt\ \dfrac{x-1}{2x+1}=a; \dfrac{y-2}{y+2}=b \\Hệ\ tương\ đương: \\\begin{cases} a-b=1\\3a+2b=3 \end{cases} <=> \begin{cases} 3a-3b=3\\3a+2b=3 \end{cases} \\<=>\begin{cases} -5b=0\\a-b=1 \end{cases} <=>\begin{cases} b=0\\a=1 \end{cases} \\->\begin{cases} x-1=2x+1\\y-2=0 \end{cases} <=>\begin{cases} x=-2(thoả\ ĐKXĐ)\\y=2(thoả\ ĐKXĐ) \end{cases}\)
1: Khi m=3 thì hệ phương trình (1) trở thành:
\(\left\{{}\begin{matrix}3x-2y=-1\\2x+3y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{13}\\y=\dfrac{5}{13}\end{matrix}\right.\)
2: Khi x=-1/2 và y=2/3 vào hệ phương trình, ta được:
\(\left\{{}\begin{matrix}2\cdot\dfrac{-1}{2}+3\cdot\dfrac{2}{3}=1\\-\dfrac{1}{2}m-\dfrac{4}{3}=-1\end{matrix}\right.\Leftrightarrow m\cdot\dfrac{-1}{2}=\dfrac{1}{3}\)
hay m=-2/3
Nguyễn Khánh Ly bạn làm được bài này chưa vậy, bạn giúp mình được không...
1: =>x^2+3x-4=0
=>(x+4)(x-1)=0
=>x=1 hoặc x=-4
2: =>2x-3y=1 và 3x=4y+2
=>2x-3y=1 và 3x-4y=2
=>x=2 và y=1
\(ĐK:x\ne-1;y\ne2\\ HPT\Leftrightarrow\left\{{}\begin{matrix}\dfrac{y}{2-y}=-1\\\dfrac{x}{x+1}+\dfrac{2y}{2-y}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}0y=-2\left(vn\right)\\\dfrac{x}{x+1}+\dfrac{2y}{2-y}=2\end{matrix}\right.\Leftrightarrow x,y\in\varnothing\)
Đặt x/x+1=a
y/2-y=b
\(\Leftrightarrow\left\{{}\begin{matrix}a+2b=1\\a+b=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=-1\\a=2-b=2-\left(-1\right)=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3x+3\\y=y-2\end{matrix}\right.\Leftrightarrow\left(x,y\right)\in\varnothing\)
a) Ta có: \(\left\{{}\begin{matrix}\sqrt{2}x-y=3\\x+\sqrt{2}y=\sqrt{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{2}x-y=3\\\sqrt{2}x+2y=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-3y=1\\x+\sqrt{2}y=\sqrt{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{1}{3}\\x=\sqrt{2}-\sqrt{2}y\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{1}{3}\\x=\sqrt{2}-\sqrt{2}\cdot\dfrac{-1}{3}=\dfrac{4\sqrt{2}}{3}\end{matrix}\right.\)
Vậy: Hệ phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=\dfrac{4\sqrt{2}}{3}\\y=-\dfrac{1}{3}\end{matrix}\right.\)
b) Ta có: \(\left\{{}\begin{matrix}\dfrac{x}{2}-2y=\dfrac{3}{4}\\2x+\dfrac{y}{3}=-\dfrac{1}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-8y=3\\2x+\dfrac{1}{3}y=-\dfrac{1}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{25}{3}y=\dfrac{10}{3}\\2x-8y=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{2}{5}\\2x=3+8y=3+8\cdot\dfrac{-2}{5}=-\dfrac{1}{5}\end{matrix}\right.\)
hay \(\left\{{}\begin{matrix}x=-\dfrac{1}{10}\\y=-\dfrac{2}{5}\end{matrix}\right.\)
Vậy: Hệ phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=-\dfrac{1}{10}\\y=-\dfrac{2}{5}\end{matrix}\right.\)
c) Ta có: \(\left\{{}\begin{matrix}\dfrac{2x-3y}{4}-\dfrac{x+y-1}{5}=2x-y-1\\\dfrac{x+y-1}{3}+\dfrac{4x-y-2}{4}=\dfrac{2x-y-3}{6}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{5\left(2x-3y\right)}{20}-\dfrac{4\left(x+y-1\right)}{20}=\dfrac{20\left(2x-y-1\right)}{20}\\\dfrac{4\left(x+y-1\right)}{12}+\dfrac{3\left(4x-y-2\right)}{12}=\dfrac{2\left(2x-y-3\right)}{12}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}10x-15y-4x-4y+4=40x-20y-20\\4x+4y-4+12x-3y-6=4x-2y-6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}6x-19y+4-40x+20y+20=0\\16x+y-10-4x+2y+6=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-34x+y=-24\\12x+3y=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-102x+3y=-72\\12x+3y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-114x=-76\\12x+3y=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{3}\\12\cdot\dfrac{2}{3}+3y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{3}\\3y=4-8=-4\end{matrix}\right.\)
hay \(\left\{{}\begin{matrix}x=\dfrac{2}{3}\\y=-\dfrac{4}{3}\end{matrix}\right.\)
Vậy: Hệ phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=\dfrac{2}{3}\\y=-\dfrac{4}{3}\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\dfrac{2}{x+2}+\dfrac{1}{2y-3}=2\\\dfrac{6}{x+2}-\dfrac{2}{2y-3}=1\end{matrix}\right.\left(I\right)\)
Đặt \(\left\{{}\begin{matrix}a=\dfrac{1}{x+2}\\b=\dfrac{1}{2y-3}\end{matrix}\right.\)
\(\left(I\right)\left\{{}\begin{matrix}2a+b=2\\6a-2b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4a+2b=4\\6a-2b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}10a=5\\6a-2b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{2}\\b=1\end{matrix}\right.\)
Với \(\left\{{}\begin{matrix}a=\dfrac{1}{2}\\b=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{x+2}=\dfrac{1}{2}\left(x\ne-2\right)\\\dfrac{1}{2y-3}=1\left(y\ne\dfrac{3}{2}\right)\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0\\y=2\end{matrix}\right.\)
Vậy nghiệm hệ phương trình là \(\left(0;2\right)\)
cảm ơn bạn nhiều