K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 2 2019

TH1:x<2

taco |x-2|=-x+2

       |x-4|=-x+4

      thay vao de bai taco 

-x+2+(-x)+4=2

-2x+6=2

-2x=-4

x=2(ktmdk)

TH2:2 be hon hoac bang xva x be hon hoac bang 4

taco |x-2|=x-2

        |x-4|=-x+4

  thay vao de bai ta co 

x-2+(-x)+4=2

0+2=2(luon dung)

vay voi moi truong hop.......

TH3:x>4

taco |x-2|=x-2

        |x-4|=x-4

thay vao de bai ta co 

x-2+x-4=2

2x-6=2

2x=8

x=4(ktmdk)

vay........

2 tháng 2 2019

x - ( 2 + 4 ) = 2

x -     6       = 2

x                =  2 + 6

x                =    8

14 tháng 8 2023

a/

\(VT=\dfrac{\left(x+4\right)-\left(x+2\right)}{\left(x+2\right)\left(x+4\right)}+\dfrac{\left(x+8\right)-\left(x+4\right)}{\left(x+4\right)\left(x+8\right)}+\dfrac{\left(x+14\right)-\left(x+8\right)}{\left(x+8\right)\left(x+14\right)}=\)

\(=\dfrac{1}{x+2}-\dfrac{1}{x+4}+\dfrac{1}{x+4}-\dfrac{1}{x+8}+\dfrac{1}{x+8}-\dfrac{1}{x+14}=\)

\(=\dfrac{1}{x+2}-\dfrac{1}{x+14}=\dfrac{12}{\left(x+2\right)\left(x+14\right)}\)

\(\Rightarrow\dfrac{12}{\left(x+2\right)\left(x+14\right)}=\dfrac{x}{\left(x+2\right)\left(x+14\right)}\left(x\ne-2;x\ne-14\right)\)

\(\Rightarrow x=12\)

 

 

14 tháng 8 2023

\(\dfrac{x}{2023}+\dfrac{x+1}{2022}+...+\dfrac{x+2022}{1}+2023=0\)

 

 

\(\dfrac{1}{2023}x+\dfrac{1}{2022}x+\dfrac{1}{2022}\cdot1+...+\dfrac{1}{1}x+\dfrac{1}{1}\cdot2022+2023=0\)

 

\(x\left(\dfrac{1}{2023}+\dfrac{1}{2022}+...+\dfrac{1}{1}\right)+\left(\dfrac{1}{2022}+\dfrac{2}{2021}+...+\dfrac{2022}{1}+2023\right)=0\)

\(x\left(\dfrac{1}{2023}+\dfrac{1}{2022}+...+\dfrac{1}{1}\right)=\dfrac{1}{2022}+\dfrac{2}{2021}+...+\dfrac{2022}{1}+2023\)

\(x=\dfrac{\dfrac{1}{2022}+\dfrac{2}{2021}+...+\dfrac{2022}{1}+2023}{\dfrac{1}{2023}+\dfrac{1}{2022}+...+\dfrac{1}{1}}\)

\(x=\dfrac{\dfrac{1}{2022}+\dfrac{2022}{2022}+\dfrac{2}{2021}+\dfrac{2021}{2021}+...+\dfrac{2022}{1}+\dfrac{1}{1}}{\dfrac{1}{2023}+\dfrac{1}{2022}+...+\dfrac{1}{1}}\)

\(x=\dfrac{\dfrac{2023}{2022}+\dfrac{2023}{2021}+...+\dfrac{2023}{1}}{\dfrac{1}{2022}+\dfrac{1}{2021}+...+\dfrac{1}{1}}=2023\)

Vậy x = 2023

a/ \(x=\dfrac{-5}{12}\)

b/ \(x\approx-1,9526\)

c/ \(x=\dfrac{21-i\sqrt{199}}{10}\)

d/ \(x=\dfrac{-20}{13}\)

25 tháng 7 2021

a) (x-2)3+6(x+1)2-x3+12=0

⇒ x3-6x2+12x-8+6(x2+2x+1)-x3+12=0

⇒ x3-6x2+12x-8+6x2+12x+6-x3+12=0

⇒ 24x+10=0

⇒ 24x=-10

⇒ x=-5/12

\(\left|x-1\right|+2\left|x-2\right|+3\left|x-3\right|+4\left|x-4\right|+5\left|x-5\right|+20x=0\left(1\right)\)

TH1: x<1

(1) trở thành 1-x+2(2-x)+3(3-x)+4(4-x)+5(5-x)+20x=0

=>\(1-x+4-2x+9-3x+16-4x+25-5x+20x=0\)

=>\(5x+55=0\)

=>x=-11(nhận)

TH2: 1<=x<2

Phương trình (1) sẽ trở thành:

\(x-1+2\left(2-x\right)+3\left(3-x\right)+4\left(4-x\right)+5\left(5-x\right)+20x=0\)

=>\(x-1+4-2x+9-3x+16-4x+25-5x+20x=0\)

=>\(7x+53=0\)

=>\(x=-\dfrac{53}{7}\left(loại\right)\)

TH3: 2<=x<3

Phương trình (1) sẽ trở thành:

\(x-1+2\left(x-2\right)+3\left(3-x\right)+4\left(4-x\right)+5\left(5-x\right)+20x=0\)

=>\(x-1+2x-4+9-3x+16-4x+25-5x+20x=0\)

=>\(11x+45=0\)

=>\(x=-\dfrac{45}{11}\left(loại\right)\)

TH4: 3<=x<4

Phương trình (1) sẽ trở thành:

\(x-1+2\left(x-2\right)+3\left(x-3\right)+4\left(4-x\right)+5\left(5-x\right)+20x=0\)

=>\(x-1+2x-4+3x-9+16-4x+25-5x+20x=0\)

=>\(-3x+27=0\)

=>x=9(loại)

TH5: 4<=x<5

Phương trình (1) sẽ trở thành:

\(\left(x-1\right)+2\left(x-2\right)+3\left(x-3\right)+4\left(x-4\right)+5\left(5-x\right)+20x=0\)

=>\(x-1+2x-4+3x-9+4x-16+25-5x+20x=0\)

=>\(25x-5=0\)

=>x=1/5(loại)

TH6: x>=5

Phương trình (1) sẽ trở thành:

\(\left(x-1\right)+2\left(x-2\right)+3\left(x-3\right)+4\left(x-4\right)+5\left(x-5\right)+20x=0\)

=>\(x-1+2x-4+3x-9+4x-16+5x-25+20x=0\)

=>35x-55=0

=>x=55/35(loại)

1: Ta có: \(4x^2-36=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)

2: Ta có: \(\left(x-1\right)^2+x\left(4-x\right)=11\)

\(\Leftrightarrow x^2-2x+1+4x-x^2=11\)

\(\Leftrightarrow2x=10\)

hay x=5

31 tháng 8 2017

mình cũng ko biết giải 

7 tháng 6 2015

ĐKXĐ:\(x\ne\left\{-2;-4;-8;-14\right\}\)

\(\frac{2}{\left(x+2\right)\left(x+4\right)}+\frac{4}{\left(x+4\right)\left(x+8\right)}+\frac{6}{\left(x+8\right)\left(x+14\right)}=\frac{x}{\left(x+2\right)\left(x+4\right)}\)

\(\Leftrightarrow2\left(x+8\right)\left(x+14\right)+4\left(x+2\right)\left(x+14\right)+6\left(x+2\right)\left(x+4\right)=x\left(x+8\right)\left(x+14\right)\)

\(\Leftrightarrow2x^2+44x+224+4x^2+64x+112+6x^2+36x+48=x^3+22x^2+112x\)

\(\Leftrightarrow12x^2+144x+384=x^3+22x^2+112x\)

\(\Leftrightarrow x^3+22x^2-12x^2+112x-144x-384=0\)

\(\Leftrightarrow x^3+10x^2-32x-384=0\)

\(\Leftrightarrow\left(x-6\right)\left(x^2+16x+64\right)=0\)

\(\Leftrightarrow\left(x-6\right)\left(x+8\right)^2=0\)

\(\Leftrightarrow x=6\)(x=-8 loại vì x=-8 thì PT không xác định)

7 tháng 6 2015

x=6

cần lời giải ko

(x-1)^3-(x+3)(x^2-3x+9)+3(x^2-4)=2

=>x^3-3x^2+3x-1-x^3-27+3x^2-12=2

=>3x-40=2

=>x=42/3=14

14 tháng 10 2016

Mong các bạn và thầy cô giải giùm ạ!

14 tháng 10 2017

Đặt \(t=\left(x+\frac{1}{x}\right)^2\)\(\Rightarrow\)\(x^2+\frac{1}{x^2}=t-2\)điều kiện t>=0,x # 0

Phương trình trở thành

8t +4(t-2)- 4(t-2)2t =(x+4)2

8t + 4t2 - 16t + 16 -4t3 + 16t2 - 16t=(x+4)2

-4t+ 20t-24t=x2 +8x

-4t(t2 -5t +6)=x(x+8)

-4t(t-2)(t-3)=x(x+8)

Mình chỉ giúp dược tới đó