K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 2 2019

A = (x^5 + 1)/(x³ + 1) = x² + (1 - x²)/(x³ + 1)

= x² + (1 - x)/(x² - x + 1)

Để A nguyên thì B = (1 - x)/(x² - x + 1) nguyên 

=> Bx² + (1 - B)x + (B - 1) = 0

Để có nghiệm thì 

∆ = (1 - B)² - 4.B.(B - 1) ≥ 0

<=> 0 ≤ B ≤ 1

Thế vô làm tiếp

3 tháng 2 2019

dễ hiểu hơn nè

Ta có : để A là số nguyên thì x5 + 1 \(⋮\)x3 + 1

\(\Rightarrow\)x2 ( x3 + 1 ) - ( x2 - 1 )  \(⋮\)x3 + 1

\(\Rightarrow\)( x - 1 ) ( x + 1 ) \(⋮\)( x + 1 ) ( x2 - x + 1 )

\(\Rightarrow\)x - 1 \(⋮\)x2 - x + 1   ( vì x + 1 khác 0 )

\(\Rightarrow\)x ( x - 1 ) \(⋮\)x2 - x + 1 

\(\Rightarrow\)x2 - x  \(⋮\)x2 - x + 1 

\(\Rightarrow\)( x2 - x + 1 ) - 1 \(⋮\)x2 - x + 1 

\(\Rightarrow\)\(⋮\)x2 - x +  1

xét 2 trường hợp : 

n2 - n + 1 = 1 \(\Rightarrow\)n ( n - 1 ) = 0 \(\Rightarrow\)n = 0 ; n = 1

n2 - n + 1 = -1 \(\Rightarrow\)n2 - n + 2 = 0 ( vô nghiêm )

vậy x = 0 ; x = 1 thì A có giá trị là số nguyên

28 tháng 7 2019

#)Giải :

1.a) Để A là phân số \(\Rightarrow\) -5 không chia hết cho n - 2 \(\Rightarrow n-2\notinƯ\left(-5\right)=\left\{\pm1;\pm5\right\}\Rightarrow n\notin\left\{\pm3;7;1\right\}\)

b) Để A nguyên \(\Rightarrow-5⋮n-2\Rightarrow n-2\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\Rightarrow n\in\left\{\pm3;7;1\right\}\)

8 tháng 10 2017

1/ Ta có \(\frac{1}{3}< \frac{9}{x}< \frac{1}{2}\)

\(\Rightarrow\frac{9}{27}< \frac{9}{x}< \frac{9}{18}\)

\(\Rightarrow27>x>18\)

Vì \(x\in Z\Rightarrow x\in\left\{19,20,...,26\right\}\)

Vậy....

3 tháng 10 2015

x=-1 =>căn x ko có nghĩa

3 tháng 10 2015

đoạn cuối là x=1;4;16;25;49 chứ

8 tháng 2 2018

tôi chịu

22 tháng 2 2021

1) số nguyên a phải có điều kiện gì để ta có phân số ?  

     a) \(\frac{32}{a-1}\)       
Để ta có phân số thì \(_{a-1\ne0}\).
Kết hợp với điều kiện a là số nguyên theo đầu bài ta tìm được a là số nguyên khác 1 .

Vậy với \(_{a\ne1}\)thì \(_{\frac{32}{a-1}}\)là phân số.

 b)\(\frac{a}{5a+30}\)=\(\frac{a}{5\left(a+6\right)}\)

Điều kiện để 5(a+6) là phân số là:

\(_{a+6\ne0\Leftrightarrow a\ne-6}\)

Vậy với \(_{a\ne6}\)thì \(_{\frac{a}{5a+30}}\)là phân số.

 2) tìm các số nguyên x để các phân số sau là số nguyên : 

 a) \(\frac{13}{x-1}\)         

Để \(_{\frac{13}{x-1}}\) là số nguyên thì 13 phải chia hết cho x-1.nghĩa là :
x-1 thuộc (+-1,+-13)
=>x thuộc (0,2,-12,14)
Vậy x thuộc (0,2,-12,14)thì 13/x-1 là số nguyên
     b) \(\frac{x+3}{x-2}\)
Ta có :

\(_{\frac{x+3}{x-2}}\)= \(_{\frac{x-2+5}{x-2}}\)\(_{\frac{1+5}{x-2}}\)
để \(_{\frac{x+3}{x-2}}\) là số nguyên thì \(_{\frac{5}{x-2}}\) là số nguyên .
Nghĩa là 5 chia hết cho x-2,hay x-2 thuộc (+-1,+-5)
=>x thuộc (1,3,-3,8)
Vậy x thuộc (1,3-3,8) thì \(_{\frac{x+3}{x-2}}\)là số nguyên.