Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = (x^5 + 1)/(x³ + 1) = x² + (1 - x²)/(x³ + 1)
= x² + (1 - x)/(x² - x + 1)
Để A nguyên thì B = (1 - x)/(x² - x + 1) nguyên
=> Bx² + (1 - B)x + (B - 1) = 0
Để có nghiệm thì
∆ = (1 - B)² - 4.B.(B - 1) ≥ 0
<=> 0 ≤ B ≤ 1
Thế vô làm tiếp
dễ hiểu hơn nè
Ta có : để A là số nguyên thì x5 + 1 \(⋮\)x3 + 1
\(\Rightarrow\)x2 ( x3 + 1 ) - ( x2 - 1 ) \(⋮\)x3 + 1
\(\Rightarrow\)( x - 1 ) ( x + 1 ) \(⋮\)( x + 1 ) ( x2 - x + 1 )
\(\Rightarrow\)x - 1 \(⋮\)x2 - x + 1 ( vì x + 1 khác 0 )
\(\Rightarrow\)x ( x - 1 ) \(⋮\)x2 - x + 1
\(\Rightarrow\)x2 - x \(⋮\)x2 - x + 1
\(\Rightarrow\)( x2 - x + 1 ) - 1 \(⋮\)x2 - x + 1
\(\Rightarrow\)1 \(⋮\)x2 - x + 1
xét 2 trường hợp :
n2 - n + 1 = 1 \(\Rightarrow\)n ( n - 1 ) = 0 \(\Rightarrow\)n = 0 ; n = 1
n2 - n + 1 = -1 \(\Rightarrow\)n2 - n + 2 = 0 ( vô nghiêm )
vậy x = 0 ; x = 1 thì A có giá trị là số nguyên
Ta có \(M=\frac{10x^2-7x-5}{2x-3}=5x+4+\frac{7}{2x-3}\)
Để \(M=5x+4+\frac{7}{2x-3}\) là số nguyên <=> \(\frac{7}{2x-3}\)là số nguyên
\(\Rightarrow7⋮2x-3\) hay \(2x-3\inƯ\left(7\right)\)
\(\RightarrowƯ\left(7\right)=\) { - 7; - 1; 1; 7 }
Ta có : 2x - 3 = 7 <=> 2x = 10 => x = 5 (t/m)
2x - 3 = 1 <=> 2x = 4 => x = 2 (t/m)
2x - 3 = - 1 <=> 2x = 2 => x = 1 (t/m)
2x - 3 = - 7 <=> 2x = - 4 => x = - 2 (t/m)
Vậy với x \(\in\) { - 2; 1; 2; 5 } thì M là số nguyên
a: Sửa đề: \(A=\dfrac{3x-2}{x}-\dfrac{x-7}{x-5}-\dfrac{10}{x^2-5x}\)
\(=\dfrac{3x-2}{x}-\dfrac{x-7}{x-5}-\dfrac{10}{x\left(x-5\right)}\)
\(=\dfrac{\left(3x-2\right)\left(x-5\right)-x\left(x-7\right)-10}{x\left(x-5\right)}\)
\(=\dfrac{3x^2-15x-2x+10-x^2+7x-10}{x\left(x-5\right)}\)
\(=\dfrac{2x^2-10x}{x\left(x-5\right)}=\dfrac{2\left(x^2-5x\right)}{x\left(x-5\right)}=2\)
b: \(B=A\cdot\dfrac{x+1}{x-1}=\dfrac{2x+2}{x-1}\)(ĐKXĐ: x<>1)
Để B là số nguyên thì \(2x+2⋮x-1\)
=>\(2x-2+4⋮x-1\)
=>\(4⋮x-1\)
=>\(x-1\in\left\{1;-1;2;-2;4;-4\right\}\)
=>\(x\in\left\{2;0;3;-1;5;-3\right\}\)
Kết hợp ĐKXĐ của cả A và B, ta được: \(x\in\left\{2;3;-1;-3\right\}\)
Ta có :\(\frac{X^3+X}{X-1}=\frac{X^2\left(X-1\right)+X\left(X-1\right)+2\left(X-1\right)+2}{X-1}\)
\(=X^2+X+2+\frac{2}{X-1}\)
Để E nguyên \(\Leftrightarrow\)\(\frac{2}{X-1}\)nguyên
\(\Leftrightarrow X-1\)thuộc ước của 2
\(\Leftrightarrow X-1\in\left\{-2,-1,1,2\right\}\)
Ta lập bảng
X-1 | -2 | -1 | 1 | 2 |
X | -1 | 0 | 2 | 3 |
Xét | C | C | C | C |
Vậy \(X\in\left\{-1,0,2,3\right\}\)