tìm min của \(A=\frac{x^2+y^2}{2017xy}\)
với x , y dương thoả mãn \(x\ge2y\)
ae nào bt tl giùm tôi nha thanks
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có x + y= 3 => x= 3 - y
=> (3 - y)^2 + y^2 \(\ge\)5
Giải bất phương trình trên, ta được: y \(\ge\)2
Chỉ biết giải đến đó, min P= 33 thì phải
cảm ơn bn , tôi nghĩ ra rồi
bn ra dc \(y\ge2\)thì thay vào \(x^2+y^2\ge5\) ra dc \(x\ge1\)
khi đó min P = 1+16+6.4.1=41 khi và chỉ khi x=1 và y=2
tks bn
Ta có: \(A=\left(1+x\right)\left(1+\frac{1}{y}\right)+\left(1+y\right)\left(1+\frac{1}{x}\right)\)
\(=1+\frac{1}{y}+x+\frac{x}{y}+1+\frac{1}{x}+y+\frac{y}{x}\)
\(=\left(x+\frac{1}{2x}\right)+\left(y+\frac{1}{2y}\right)+\left(\frac{y}{x}+\frac{x}{y}\right)+\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}\right)+2\)
Lại có: \(x,y\in Z^+\) nên ta có:
Dấu " = " xảy ra \(\Leftrightarrow x=\frac{1}{\sqrt{2}}\)
Dấu " = " xảy ra \(\Leftrightarrow y=\frac{1}{\sqrt{2}}\)
Dấu " = " xảy ra \(\Leftrightarrow x=y\)
Dấu " = " xảy ra \(\Leftrightarrow x=y=\frac{1}{\sqrt{2}}\)
Từ trên ta suy ra: \(A\ge3\sqrt{2}+4\)
Dấu " = " xảy ra \(\Leftrightarrow x=y=\frac{1}{\sqrt{2}}\)
Vậy \(A_{Min}=3\sqrt{2}+4\)
\(A=\frac{1}{16x^2}+\frac{1}{4y^2}+\frac{1}{z^2}\)
\(=\frac{1}{16x^2}+\frac{4}{16y^2}+\frac{16}{16z^2}\)
\(=\frac{1}{16}\left(\frac{1}{x^2}+\frac{4}{y^2}+\frac{16}{z^2}\right)\)
\(\ge\frac{1}{16}.\frac{\left(1+2+4\right)^2}{x^2+y^2+z^2}=\frac{49}{16}\)
(Dấu "="\(\Leftrightarrow\frac{1}{x^2}=\frac{2}{y^2}=\frac{4}{z^2}=7\)
\(\Rightarrow\hept{\begin{cases}x=\frac{1}{\sqrt{7}}\\y=\sqrt{\frac{2}{7}}\\z=\frac{2}{\sqrt{7}}\end{cases}}\)hoặc \(\Rightarrow\hept{\begin{cases}x=-\frac{1}{\sqrt{7}}\\y=-\sqrt{\frac{2}{7}}\\z=-\frac{2}{\sqrt{7}}\end{cases}}\)
Thêm 1 cách nhé!Câu hỏi của Dang Quốc Hung - Toán lớp 8 - Học toán với OnlineMath
@Cool Boy @ Cách làm của em hay lắm nhưng x, y, z >0 em nhé!
Ta có:
\(A=\frac{2x^2+y^2-2xy}{xy}=\frac{\left(x^2-4xy+4y^2\right)+x^2+2xy-3y^2}{xy}=\frac{\left(x-2y\right)^2+x^2+2xy-3y^2}{xy}\)
\(=\frac{\left(x-2y\right)^2}{xy}+\frac{x}{y}+2+\frac{-3y}{x}\ge0+2+2+\frac{-3}{2}=\frac{5}{2}\)
Vậy minA = \(\frac{5}{2}\)khi x = 2y.
Mình gợi ý để bạn được người khác giúp nhé. Khi đăng bài bạn nên đăng từng câu. Đừng đăng nhiều câu cùng lúc vì nhìn vô không ai muốn giải hết. Giờ bạn tách ra từng câu đăng lại đi. Sẽ có người giúp đấy
\(x\ge2y\) ta lấy luôn điểm rơi tại biên tức \(x=2y\) từ đó có cách phân tích sau:
\(M=\frac{x^2+y^2}{xy}=\frac{x}{y}+\frac{y}{x}=\left(\frac{y}{x}+\frac{x}{4y}\right)+\frac{3x}{4y}\ge2.\sqrt{\frac{y}{x}.\frac{x}{4y}}+\frac{3.2y}{4y}=\frac{5}{2}\)
Dấu "=" \(x=2y\) Thay \(x=2y\) vào \(M\)
Ta có: \(x^2+y^2=\left(x^2+4y^2\right)-3y^2\)
\(\ge4xy-3y^2\)
\(\ge4xy-3y.\frac{x}{2}\)
\(=\frac{5}{2}xy\)
Khi đó \(A=\frac{x^2+y^2}{2017xy}\ge\frac{\frac{5xy}{2}}{2017xy}=\frac{5}{4034}\)
Dấu "=" xảy ra <=> x = 2y