Tìm x, y thỏa mãn phương trình
y2 + 2x - 1 = \(\frac{4^x+y^4}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK: \(\hept{\begin{cases}x\ge2\\y\ge1\end{cases}}\)
pt <=> \(\left(\frac{36}{\sqrt{x-2}}+4\sqrt{x-2}\right)+\left(\frac{4}{\sqrt{y-1}}+\sqrt{y-1}\right)=28\)(1)
Áp dụng cô-si
VT \(\ge2\sqrt{\frac{36}{\sqrt{x-2}}.4\sqrt{x-2}}+2\sqrt{\frac{4}{\sqrt{y-1}}.\sqrt{y-1}}=28\)
(1) xảy ra <=> \(\hept{\begin{cases}\frac{36}{\sqrt{x-2}}=4\sqrt{x-2}\\\frac{4}{\sqrt{y-1}}=\sqrt{y-1}\end{cases}}\)
<=> x = 11 ; y = 5 ( tm )
Kết luận:...
1. Ta có: \(x^2-2xy-x+y+3=0\)
<=> \(x^2-2xy-2.x.\frac{1}{2}+2.y.\frac{1}{2}+\frac{1}{4}+y^2-y^2-\frac{1}{4}+3=0\)
<=> \(\left(x-y-\frac{1}{2}\right)^2-y^2=-\frac{11}{4}\)
<=> \(\left(x-2y-\frac{1}{2}\right)\left(x-\frac{1}{2}\right)=-\frac{11}{4}\)
<=> \(\left(2x-4y-1\right)\left(2x-1\right)=-11\)
Th1: \(\hept{\begin{cases}2x-4y-1=11\\2x-1=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=-3\end{cases}}\)
Th2: \(\hept{\begin{cases}2x-4y-1=-11\\2x-1=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=3\end{cases}}\)
Th3: \(\hept{\begin{cases}2x-4y-1=1\\2x-1=-11\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-5\\y=-3\end{cases}}\)
Th4: \(\hept{\begin{cases}2x-4y-1=-1\\2x-1=11\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=3\end{cases}}\)
Kết luận:...
Từ giả thiết \(=>x+y=2xy\)
Áp dụng bđt Cô-si ta có :
\(x^4+y^2\ge2\sqrt{x^4y^2}=2x^2y\)
\(y^4+x^2\ge2\sqrt{y^4x^2}=2y^2x\)
Khi đó : \(C\le\frac{1}{2}\left[\frac{1}{xy\left(x+y\right)}+\frac{1}{xy\left(x+y\right)}\right]=\frac{1}{2}.\frac{2}{xy\left(x+y\right)}=\frac{1}{xy\left(x+y\right)}\)
đến đây dễ rồi ha
oke làm tiếp
Ta có \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}< =>2\ge\frac{4}{x+y}< =>x+y\ge2\)
Mặt khác \(C\le\frac{1}{xy\left(x+y\right)}=\frac{1}{\frac{\left(x+y\right)}{2}.\left(x+y\right)}=\frac{2}{\left(x+y\right)^2}\le\frac{1}{2}\)
Vậy GTLN của C = 1/2 đạt được khi x=y=1
4:
x+3y=4m+4 và 2x+y=3m+3
=>2x+6y=8m+8 và 2x+y=3m+3
=>5y=5m+5 và x+3y=4m+4
=>y=m+1 và x=4m+4-3m-3=m+1
x+y=4
=>m+1+m+1=4
=>2m+2=4
=>2m=2
=>m=1
3:
x+2y=3m+2 và 2x+y=3m+2
=>2x+4y=6m+4 và 2x+y=3m+2
=>3y=3m+2 và x+2y=3m+2
=>y=m+2/3 và x=3m+2-2m-4/3=m+2/3
Ta có :\(2x^2+\frac{1}{x^2}+\frac{y^2}{4}=4\Leftrightarrow\left(x^2+\frac{1}{x^2}-2\right)+\left(x^2+\frac{y^2}{4}-xy\right)+xy=2\)
\(\Leftrightarrow\left(x-\frac{1}{x}\right)^2+\left(x-\frac{y}{2}\right)^2=2-xy\)
\(\Rightarrow2-xy\ge0\Leftrightarrow xy\le2\) có GTLN là \(2\)
Dấu "=" xảy ra \(\Leftrightarrow x=1;y=2\)
\(y^2+2^x-1=\frac{4^x+y^4}{2}\)
\(\Leftrightarrow4^x+y^4-2y^2-2.2^x+2=0\)
\(\Leftrightarrow\left(y^4-2y^2+1\right)+\left(4^x-2.2^x+1\right)=0\)
\(\Leftrightarrow\left(y^2-1\right)^2+\left(2^x-1\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}y^2=1\Rightarrow\orbr{\begin{cases}y=1\\y=-1\end{cases}}\\2^x=1\Rightarrow x=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}y^2=1\Rightarrow y=\pm1\\2^x=1\Rightarrow x=0\end{cases}}\)
Pt có tập nghiệm \(\left(x;y\right)=\left(0;1\right);\left(0;-1\right)\)