Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
6) Ta có
\(A=\frac{x^3}{y+2z}+\frac{y^3}{z+2x}+\frac{z^3}{x+2y}\)
\(=\frac{x^4}{xy+2xz}+\frac{y^4}{yz+2xy}+\frac{z^4}{zx+2yz}\)
\(\ge\frac{\left(x^2+y^2+z^2\right)^2}{xy+2xz+yz+2xy+zx+2yz}\)
\(\Leftrightarrow A\ge\frac{1}{3\left(xy+yz+zx\right)}\ge\frac{1}{3\left(x^2+y^2+z^2\right)}=\frac{1}{3}\)
2/ \(\frac{1}{2}x2y5z3=\left(\frac{1}{2}.2.5.3\right)xyz\)\(=15xyz\)
\(\Rightarrow\frac{1}{2}x2y5z3\)có bậc là 3
3/ \(\frac{x}{4}=\frac{9}{x}\Leftrightarrow x^2=9.4\Rightarrow x^2=36\) mà \(x>0\Rightarrow x=6\)
4/ \(\left|2x-\frac{1}{2}\right|+\frac{3}{7}=\frac{38}{7}\Rightarrow\left|2x+\frac{1}{2}\right|=\frac{35}{7}=5\Rightarrow\hept{\begin{cases}2x+\frac{1}{2}=5\Rightarrow2x=\frac{9}{2}\Rightarrow x=\frac{9}{4}\\2x+\frac{1}{2}=-5\Rightarrow2x=\frac{-11}{2}\Rightarrow x=\frac{-11}{4}\end{cases}}\)
(x2+1/x^2-2)+(y2+1/y^2-2)=0
(x-1/x)^2+(y-1/y)^2=0
=>{x-1/x=0;y-1/y=0
(x2+1/x^2-2)+(y2+1/y^2-2)=0
(x-1/x)^2+(y-1/y)^2=0
=>{x-1/x=0;y-1/y=0
Ta có x2 + 1 >=2x . Dấu = xảy ra khi x = 1
Tương tự ta cũng có : y2 +4 >=4y. dấu = xảy ra khi y = 2 ; z2 +9 >=6z, dấu = xảy ra khi y = 3
vì x, y, z > 0, nên nhân từng vế các bđt này ta đc : ( x2 +1)( y2 +4)( z2 +9) >= 48xyz
Dấu = xảy ra khi x =1, y =2, z = 3
Vậy \(P=\frac{1^3+2^3+3^3}{\left(1+2+3\right)^2}=\frac{36}{36}=1\)
\(y^2+2^x-1=\frac{4^x+y^4}{2}\)
\(\Leftrightarrow4^x+y^4-2y^2-2.2^x+2=0\)
\(\Leftrightarrow\left(y^4-2y^2+1\right)+\left(4^x-2.2^x+1\right)=0\)
\(\Leftrightarrow\left(y^2-1\right)^2+\left(2^x-1\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}y^2=1\Rightarrow\orbr{\begin{cases}y=1\\y=-1\end{cases}}\\2^x=1\Rightarrow x=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}y^2=1\Rightarrow y=\pm1\\2^x=1\Rightarrow x=0\end{cases}}\)
Pt có tập nghiệm \(\left(x;y\right)=\left(0;1\right);\left(0;-1\right)\)