K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 1 2019

a) 3 \(⋮\) n+5

\(\Rightarrow n+5\inƯ\left(3\right)=\left\{1;3;-1;-3\right\}\)

\(\Rightarrow n\in\left\{-4;-2;-6;-8\right\}\)

Vậy.....................................

a: =>\(n+5\in\left\{1;-1;3;-3\right\}\)

=>\(n\in\left\{-4;-6;-2;-8\right\}\)

b: =>-6n+4 chia hết cho 2n+1

=>-6n-3+7 chia hết cho 2n+1

=>\(2n+1\in\left\{1;-1;7;-7\right\}\)

=>\(n\in\left\{0;-1;3;-4\right\}\)

NV
7 tháng 2 2021

\(a=\lim4^n\left(1-\left(\dfrac{3}{4}\right)^n\right)=+\infty.1=+\infty\)

\(b=\lim\left(4^n+2.2^n+1-4^n\right)=\lim2^n\left(2+\dfrac{1}{2^n}\right)=+\infty.2=+\infty\)

\(c=limn^3\left(\sqrt{\dfrac{2}{n}-\dfrac{3}{n^4}+\dfrac{11}{n^6}}-1\right)=+\infty.\left(-1\right)=-\infty\)

\(d=\lim n\left(\sqrt{2+\dfrac{1}{n^2}}-\sqrt{3-\dfrac{1}{n^2}}\right)=+\infty\left(\sqrt{2}-\sqrt{3}\right)=-\infty\)

\(e=\lim\dfrac{3n\sqrt{n}+1}{\sqrt{n^2+3n\sqrt{n}+1}+n}=\lim\dfrac{3\sqrt{n}+\dfrac{1}{n}}{\sqrt{1+\dfrac{3}{\sqrt{n}}+\dfrac{1}{n^2}}+1}=\dfrac{+\infty}{2}=+\infty\)

a: \(\left(n^2+3n-1\right)\left(n+2\right)-n^3+2\)

\(=n^3+2n^2+3n^2+6n-n-2+n^3+2\)

\(=5n^2+5n=5\left(n^2+n\right)⋮5\)

b: \(\left(6n+1\right)\left(n+5\right)-\left(3n+5\right)\left(2n-1\right)\)

\(=6n^2+30n+n+5-6n^2+3n-10n+5\)

\(=24n+10⋮2\)

d: \(=\left(n+1\right)\left(n^2+2n\right)\)

\(=n\left(n+1\right)\left(n+2\right)⋮6\)

17 tháng 1 2021

Dang này thì cứ chọn số hạng có mũ cao nhất trên tử và mẫu là được. Nó là ngắt vô cùng lớn hay bé gì đấy

\(=lim\dfrac{8n^6}{3n^6}=\dfrac{8}{3}\)

17 tháng 10 2018

????? đề j kì zể???

21 tháng 10 2022

a: \(=n^3+2n^2-3n^2-6n+n+2-n^3+2\)

\(=-n^2+5n\)

Cái này nếu n=1 thì ko thỏa mãn nha bạn

b: \(=6n^2+30n+n+5-6n^2+30n-10n+50\)

\(=49n+55\)

Nếu n là số lẻ thì 49n+55 chia hết cho 2

Còn nếu n là số chẵn thì 49n+55 ko chia hết cho 2 nha bạn

NV
15 tháng 2 2022

\(\lim\dfrac{\left(2n+1\right)\left(3n-2\right)^2}{n^3+n-1}=\lim\dfrac{n\left(2+\dfrac{1}{n}\right).n^2.\left(3-\dfrac{2}{n}\right)^2}{n^3\left(1+\dfrac{1}{n^2}-\dfrac{1}{n^3}\right)}\)

\(=\lim\dfrac{\left(2+\dfrac{1}{n}\right)\left(3-\dfrac{2}{n}\right)^2}{1+\dfrac{1}{n^2}-\dfrac{1}{n^3}}=\dfrac{2.3^2}{1}=18\)

\(\lim\dfrac{2n-1}{3n^2+4n-1}=\lim\dfrac{n\left(2-\dfrac{1}{n}\right)}{n^2\left(3+\dfrac{4}{n}-\dfrac{1}{n^2}\right)}=\lim\dfrac{2-\dfrac{1}{n}}{n\left(3+\dfrac{4}{n}-\dfrac{1}{n^2}\right)}=\dfrac{2}{+\infty}=0\)

11 tháng 2 2022

\(b,lim\dfrac{\left(n^2+1\right)\left(n-10\right)^2}{\left(n+1\right)\left(3n-3\right)^3}\)

\(=lim\dfrac{\left(1+\dfrac{1}{n^2}\right)\left(\dfrac{1}{n}-\dfrac{10}{n^2}\right)^2}{\left(1+\dfrac{1}{n}\right)\left(\dfrac{3}{n^2}-\dfrac{3}{n^3}\right)}=0\)

11 tháng 2 2022

\(a,lim\dfrac{4n^5-3n^2}{\left(3n^2-2\right)\left(1-4n^3\right)}\)

\(=lim\dfrac{4-\dfrac{3}{n^3}}{\left(3-\dfrac{2}{n^2}\right)\left(\dfrac{1}{n^3}-4\right)}\)

\(=\dfrac{4-0}{\left(3-0\right)\left(0-4\right)}=\dfrac{4}{-12}=-\dfrac{1}{3}\)

27 tháng 6 2017

a, Ta có: \(\left(n^2+3n-1\right)\left(n+2\right)-n^3+2\)

\(=n^3+3n^2-n+2n^2+6n-2-n^3+2\)

\(=5n^2+5n=5\left(n^2+n\right)⋮5\)

\(\Rightarrowđpcm\)

b, \(\left(6n+1\right)\left(n+5\right)-\left(3n+5\right)\left(2n-1\right)\)

\(=6n^2+31n+5-6n^2-7n+5\)

\(=24n+10=2\left(12n+5\right)⋮2\)

\(\Rightarrowđpcm\)

27 tháng 6 2017

a) (n2+ 3n 1) (n + 2) n3+ 2

= n3 + 2n2 + 3n2 + 6n - n - 2 + 2

= 5n2 + 5n

= 5(n2 + n ) chia hết cho 5

b) (6n + 1) (n + 5) (3n + 5) (2n 1)

= 6n2 + 30n + n + 5 - 6n2 + 3n - 10n +5

= 24n + 10

= 2(12n +5) chia hết cho 2

NV
10 tháng 1 2021

\(\lim\dfrac{\left(2n-1\right)\left(3n^2+2\right)^3}{-2n^5+4n^3-1}=\lim\dfrac{\left(\dfrac{2n-1}{n}\right)\left(\dfrac{3n^2+2}{n^2}\right)^3}{\dfrac{-2n^5+4n^3-1}{n^7}}\)

\(=\lim\dfrac{\left(2-\dfrac{1}{n}\right)\left(3+\dfrac{2}{n^2}\right)^3}{-\dfrac{2}{n^2}+\dfrac{4}{n^4}-\dfrac{1}{n^7}}=-\infty\)

\(\lim3^n\left(6.\left(\dfrac{2}{3}\right)^n-5+\dfrac{7n}{3^n}\right)=+\infty.\left(-5\right)=-\infty\)