a, ( x - 1 ) . ( xy + 1 ) = 2
b, xy - 2 x = 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
thử tài ai nhanh hơn còn lâu mới làm haaaaaaaaaaaaaa chưa học -_-
\(a,=\left(xy-1-x-y\right)\left(xy-1+x+y\right)\\ b,Sửa:a^3+2a^2+2a+1\\ =a^3+a^2+a^2+a+a+1=\left(a+1\right)\left(a^2+a+1\right)\\ c,=1-4a^2-a\left(a^2-4\right)=1-4a^2-a^3+4a\\ =\left(1-a\right)\left(1+a+a^2\right)+4a\left(1-a\right)\\ =\left(1-a\right)\left(1+5a+a^2\right)\\ d,=\left(a^2-a^2b^2\right)+\left(b^2-b\right)+\left(ab-a\right)\\ =a^2\left(1-b\right)\left(1+b\right)+b\left(b-1\right)+a\left(b-1\right)\\ =\left(b-1\right)\left(-a^2-ab+b+a\right)\\ =\left(b-1\right)\left(b-1\right)\left(a+b\right)\left(1-a\right)\)
\(e,=x^2y+xy^2-yz\left(y+z\right)+x^2z-xz^2\\ =\left(x^2y+x^2z\right)+\left(xy^2-xz^2\right)-yz\left(y+z\right)\\ =x^2\left(y+z\right)+x\left(y-z\right)\left(y+z\right)-yz\left(y+z\right)\\ =\left(y+z\right)\left(x^2+xy-xz-yz\right)\\ =\left(y+z\right)\left(x+y\right)\left(x-z\right)\)
\(f,=xyz-xy-yz-xz+x+y+z-1\\ =xy\left(z-1\right)-y\left(z-1\right)-x\left(z-1\right)+\left(x-1\right)\\ =\left(z-1\right)\left(xy-y-x+1\right)=\left(z-1\right)\left(x-1\right)\left(y-1\right)\)
a) \(\dfrac{x+6}{x^2-4}+\dfrac{1}{x+2}=\dfrac{x+6}{\left(x-2\right)\left(x+2\right)}+\dfrac{x-2}{\left(x+2\right)\left(x-2\right)}=\dfrac{x+6+x-2}{\left(x+2\right)\left(x-2\right)}\)
\(=\dfrac{2x+4}{\left(x+2\right)\left(x-2\right)}=\dfrac{2}{x-2}\)
b) \(x^2+xy-5\left(x+y\right)=x\left(x+y\right)-5\left(x+y\right)=\left(x-5\right)\left(x+y\right)\)
a) \(xy+x+y=2\)
\(xy+x+y+1=2+1\)
\(\left(xy+x\right)+\left(y+1\right)=3\)
\(x\left(y+1\right)+\left(y+1\right)=3\)
\(\left(y+1\right)\left(x+1\right)=3\)
\(\Rightarrow\left\{{}\begin{matrix}x+1\in\left\{-3;-1;1;3\right\}\\y+1\in\left\{-1;-3;3;1\right\}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x\in\left\{-4;-2;0;2\right\}\\y\in\left\{-2;-4;2;0\right\}\end{matrix}\right.\)
Vậy ta tìm được các cặp giá trị \(\left(x;y\right)\) thỏa mãn yêu cầu:
\(\left(-4;-2\right);\left(-2;-4\right);\left(0;2\right);\left(2;0\right)\)
b) \(\left(x+1\right).y+2=-5\)
\(\left(x+1\right).y=-5-2\)
\(\left(x+1\right).y=-7\)
\(\Rightarrow\left\{{}\begin{matrix}x+1\in\left\{-7;-1;1;7\right\}\\y\in\left\{1;7;-7;-1\right\}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x\in\left\{-8;-2;0;6\right\}\\y\in\left\{1;7;-7;-1\right\}\end{matrix}\right.\)
Mà \(x< y\)
\(\Rightarrow\left\{{}\begin{matrix}x\in\left\{-8;-2\right\}\\y\in\left\{1;7\right\}\end{matrix}\right.\)
Vậy ta tìm được các cặp giá trị \(\left(x;y\right)\) thỏa mãn yêu cầu:
\(\left(-8;1\right);\left(-2;7\right)\)
\(\begin{array}{l}T + H = 3{x^2}y - 2x{y^2} + xy + \left( { - 2{x^2}y + 3x{y^2} + 1} \right)\\ = 3{x^2}y - 2x{y^2} + xy - 2{x^2}y + 3x{y^2} + 1\\ = \left( {3{x^2}y - 2{x^2}y} \right) + \left( { - 2x{y^2} + 3x{y^2}} \right) + xy + 1\\ = {x^2}y + x{y^2} + xy + 1\\T - H = 3{x^2}y - 2x{y^2} + xy - \left( { - 2{x^2}y + 3x{y^2} + 1} \right)\\ = 3{x^2}y - 2x{y^2} + xy + 2{x^2}y - 3x{y^2} - 1\\ = \left( {3{x^2}y + 2{x^2}y} \right) + \left( { - 2x{y^2} - 3x{y^2}} \right) + xy - 1\\ = 5{x^2}y - 5x{y^2} + xy - 1\end{array}\)
Chọn B.
a, (x - 1)(xy + 1) = 2
=> x - 1; xy + 1 thuoc U(2) = {1; 2; -1; -2}
tu xet bang, b tuong tu
a, \(\left(x-1\right).\left(xy+1\right)=2\)
\(\Rightarrow x-1;xy+1\inƯ\left(2\right)=\left\{1;-1;2;-2\right\}\)
TH1:
\(\hept{\begin{cases}x-1=1\\xy+1=2\end{cases}\Rightarrow\hept{\begin{cases}x=1+1\\xy=2-1\end{cases}\Rightarrow}\hept{\begin{cases}x=2\\xy=1\end{cases}\Rightarrow}\hept{\begin{cases}x=2\\2.y=1\end{cases}\Rightarrow}\hept{\begin{cases}x=2\\y=\frac{1}{2}\end{cases}}}\)
TH2:
\(\hept{\begin{cases}x-1=2\\xy+1=1\end{cases}\Rightarrow\hept{\begin{cases}x=2+1\\xy=1-1\end{cases}\Rightarrow}\hept{\begin{cases}x=3\\xy=0\end{cases}\Rightarrow}\hept{\begin{cases}x=3\\3.y=0\end{cases}\Rightarrow}\hept{\begin{cases}x=3\\y=0\end{cases}}}\)
Bạn chia trường hợp tương tự với số âm
b, \(xy-2x=5\)
\(\Rightarrow x\left(y-2\right)=5\)
\(\Rightarrow x;y-2\inƯ\left(5\right)=\left\{1;-1;5;-5\right\}\)
\(\Rightarrow x\in\left\{1;-1;5;-5\right\};y-2\in\left\{1;-1;5;-5\right\}\)
\(\Rightarrow y\in\left\{3;1;7;-3\right\}\)
Vậy ....