tìm các số nguyên n để (n^2+n+23) / (2-n) có giá trị là số nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Để \(\dfrac{n+1}{n-2}\) có giá trị là một số nguyên thì n + 1 ⋮ n - 2
=> (n - 2) + 3 ⋮ n - 2
Vì (n - 2) ⋮ n - 2 nên 3 ⋮ n - 2
=> n - 2 ∈ Ư(3) ∈ {-3;-1;1;3}
=> n ∈ {-1;1;3;5}
b, Để \(\dfrac{4n+5}{2n-1}\) có giá trị là một số nguyên thì 4n + 5 ⋮ 2n - 1
=> (4n - 2) + 7 ⋮ 2n - 1
=> 2(2n - 1) + 7 ⋮ 2n - 1
Vì 2(2n - 1) ⋮ 2n -1 nên 7 ⋮ 2n - 1
=> 2n - 1 ∈ Ư(7) ∈ {-7;-1;1;7}
=> n ∈ {-3;0;1;4}
a, Để A là phân số thì \(2-n\ne0\Leftrightarrow n\ne2\)
b, \(A=\frac{1}{2n}\inℤ\Rightarrow2n\inƯ\left(1\right)=\left\{\pm1\right\}\)
2n | 1 | -1 |
n | 1/2 ( tm ) | -1/2 ( tm ) |
ta có n-1 ⋮ n-1
⇒3(n-1)⋮ n-1
⇒3n-3⋮ n-1
⇒(3n+2)-(3n-3)⋮ n-1
⇒5⋮ n-1
⇒(n-1)ϵ Ư(5)
n-1 | 1 | 5 | -1 | -5 |
n | 2 | 6 | 0 | -4 |
vậy n={2;6;0;-4}
Để (3n+2)/(n-1) là số nguyên
=> 3n+2 chia hết cho n-1
=> (3n-3)+3+2 chia hết cho n-1
=>3(n-1)+5 chia hết cho n-1
Vì 3(n-1) chia hết cho n-1 nên 5 chia hết cho n-1
=> n-1 thuộc Ư(5)={-5;-1;1;5}
Vậy n thuộc -4 ;0 ;2 ; 6
Để (3n+2)/(n-1) là số nguyên
=> 3n+2 chia hết cho n-1
=> (3n-3)+3+2 chia hết cho n-1
=>3(n-1)+5 chia hết cho n-1
Vì 3(n-1) chia hết cho n-1 nên 5 chia hết cho n-1
=> n-1 thuộc Ư(5)={-5;-1;1;5}
Vậy n thuộc -4 ;0 ;2 ; 6
Ta có : 3n+2 chia n-1 bằng 3 dư 5 .Để A là số nguyên thì n-1 phải là ước của 5 bao gồm : 1;-1;5;-5
n-1=1=>n=2
n-1=-1 =>n=0
n-1=5=>n=6
n-1=-5=>n=-4
Vậy n thuộc tập hợp bao gồm : -4;0;2;6
De A co gia tri nguyen => 3n + 2 chia het n - 1
=> 3(n-1) + 5 chia het n - 1
Vi 3( n-1 ) chia het n - 1
=> 5 chia het n - 1
=> n - 1 thuoc uoc cua 5 ( chu y: Ca uoc duong va am)
........................................ Den day bn tu lam nhe!
...............................
ta có A=3n+2/n-1
=3(n-1)+5/n-1
=3+5/n-1
để A thuộc Z suy ra 5/n-1 thuộc Z suy ra n-1 thuộc Ư(5)=(-1;1;-5;5)
ta có bảng
n-1 | -5 | -1 | 1 | 5 |
n | -4 | 0 | 2 | 6 |
A | 2 | -2 | 8 | 4 |
vậyn=-4;0;2;6 thì A thuộc Z
a: Để A là phân số thì n-2<>0
=>n<>2
Khi n=-2 thì \(A=\dfrac{2\cdot\left(-2\right)+1}{-2-2}=\dfrac{-3}{-4}=\dfrac{3}{4}\)
b: Để A nguyên thì 2n+1 chia hết cho n-2
=>2n-4+5 chia hết cho n-2
=>\(n-2\in\left\{1;-1;5;-5\right\}\)
=>\(n\in\left\{3;1;7;-3\right\}\)
Để A là số nguyên thì \(n^2+n+23⋮n-2\)
\(\Leftrightarrow n-2\in\left\{1;-1;29;-29\right\}\)
hay \(n\in\left\{3;1;31;-27\right\}\)
tách ra thế n