K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 1 2019

H B A C

Xét \(\Delta ABC\)vuông tại A ta có: 

\(AB^2+AC^2=BC^2\)( định lý Py-ta-go) (1)

Xét \(\Delta AHC;\Delta AHB\)vuông tại H ta có: 

\(AH^2+BH^2=AB^2\)( định lý Py-ta-go) (2)

\(AH^2+HC^2=AC^2\)( định lý Py-ta-go) (3)

Thay (2) và (3) vào (1) ta có:

\(2AH^2+BH^2+HC^2=BC^2\)

\(\Leftrightarrow2AH^2+BH^2+HC^2=\left(BH+HC\right)^2\)

\(\Leftrightarrow2AH^2+BH^2+HC^2=BH^2+HC^2+2.BH.HC\)

\(\Leftrightarrow2AH^2=2.BH.HC\)

\(\Leftrightarrow AH^2=BH.HC\) (4) 

\(\Leftrightarrow\frac{1}{AH^2}=\frac{1}{BH.HC}\) (5)

Thay (4) vào (3) ; (2) ta có:

\(\hept{\begin{cases}BH.HC+BH^2=AB^2\\BH.HC+HC^2=AC^2\end{cases}\Leftrightarrow}\hept{\begin{cases}BH.\left(HC+BH\right)=AB^2\\HC.\left(BH+HC\right)=AC^2\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{1}{AB^2}=\frac{1}{BH.\left(HC+BH\right)}=\frac{1}{BH.BC}\\\frac{1}{AC^2}=\frac{1}{HC.\left(BH+HC\right)}=\frac{1}{BH.BC}\end{cases}}\)

\(\Leftrightarrow\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{BH.BC}+\frac{1}{HC.BC}=\frac{BH+HC}{BH.BC.HC}=\frac{BC}{BH.BC.HC}=\frac{1}{BH.HC}\)(6)

Từ (5) và (6)

\(\Rightarrow\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\)

                             đpcm

24 tháng 2 2022

giúp vs

 

5 tháng 4 2021

a) Xét tam giác ABC và tam giác HAC có:

BAC = AHC =90 

ABC = HAC (cùng phụ với HAB) 

=> ABC đồng dạng HAC (g.g)

b) Vì ABC đồng dạng HAC

=> AB/BC = AH/AC

=> AB.AC=BC.AH

c) Vì AB.AC = BC.AH

=> AB^2.AC^2= BC^2 . AH^2

Mà BC^2=AB^2+AC^2 (định lý pytago ở tam giác ABC vuông tại A)

=> AB^2.AC^2= (AB^2+AC)^2.AH^2

=> 1/AH^2 =1/AB^2 +1/AC^2

1: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

Do đó: ΔAHB=ΔAHC

=>HB=HC

=>H là trung điểm của BC

2: Ta có: H là trung điểm của BC

=>\(HB=HC=\dfrac{BC}{2}=\dfrac{12}{2}=6\left(cm\right)\)

ΔAHB vuông tại H

=>\(HA^2+HB^2=AB^2\)

=>\(HA^2=10^2-6^2=64\)

=>\(HA=\sqrt{64}=8\left(cm\right)\)

3: Xét ΔAHN có

AF là đường cao

AF là đường trung tuyến

Do đó: ΔAHN cân tại A

=>AH=AH

4: Xét ΔAHM có

AE là đường trung tuyến

AE là đường cao

Do đó: ΔAHM cân tại A

=>AM=AH

Ta có: ΔAHN cân tại A

mà AC là đường cao

nên AC là phân giác của góc HAN

=>\(\widehat{HAN}=2\cdot\widehat{HAC}\)

Ta có: ΔAHM cân tại A

mà AB là đường cao

nên AB là phân giác của góc HAM

=>\(\widehat{HAM}=2\cdot\widehat{HAB}\)

Ta có: AM=AH

AH=AN

Do đó: AM=AN

Ta có: \(\widehat{HAM}+\widehat{HAN}=\widehat{MAN}\)

=>\(\widehat{MAN}=2\cdot\left(\widehat{HAB}+\widehat{HAC}\right)\)

=>\(\widehat{MAN}=2\cdot\widehat{BAC}\)

Để A là trung điểm của MN thì AM=AN và góc MAN=180 độ

=>góc MAN=180 độ

=>\(2\cdot\widehat{BAC}=180^0\)

=>\(\widehat{BAC}=90^0\)

1) Ta có: \(BC^2=10^2=100\)

\(AB^2+AC^2=6^2+8^2=100\)

Do đó: \(BC^2=AB^2+AC^2\)(=100)

Xét ΔABC có \(BC^2=AB^2+AC^2\)(cmt)

nên ΔABC vuông tại A(Định lí Pytago đảo)

2) Ta có: ΔABC vuông tại A(gt)

nên \(S_{ABC}=\dfrac{AB\cdot AC}{2}=\dfrac{6\cdot8}{2}=24\left(cm^2\right)\)

3) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH\cdot BC=AB\cdot AC\)

\(\Leftrightarrow AH\cdot10=6\cdot8=48\)

hay AH=4,8(cm)

Vậy: AH=4,8cm

8 tháng 2 2021

em cảm ơn ạ

 

20 tháng 3 2022

a, Xét tam giác ABC và tam giác HBA có 

^B _ chung ; ^BAC = ^HBA = 900

Vậy tam giác ABC ~ tam giác HBA (g.g) 

b, Xét tam giác AHC và tam giác BHA ta có 

^AHC = ^BHA = 900

^HAC = ^HBA ( cùng phụ ^HAB ) 

Vậy tam giác AHC ~ tam giác BHA (g.g) 

\(\dfrac{AH}{BH}=\dfrac{HC}{AH}\Rightarrow AH^2=HC.HB\)

Bài 1: 

a: BC=30cm

AH=14,4(cm)

BH=10,8(cm)

1: 

góc BAH+góc KAC=90 độ

góc BAH+góc ABH=90 độ

=>góc KAC=góc ABH

Xét ΔHBA vuông tại H và ΔKAC vuông tại K có

BA=AC

góc ABH=góc CAK

=>ΔHBA=ΔKAC

a: Xét tứ giác ABMC có

O là trung điêm chung của AM và BC

góc BAC=90 độ

=>ABMC là hình chữ nhật

=>AB=MC và MC//AB

b: ΔACB vuông tại A

mà AO là trung tuyến

nên OA=OB=OC

c: Xet ΔABC vuông tại A có AH là đường cao

nên 1/AH^2=1/AB^2+1/AC^2

15 tháng 4 2021

undefinedundefined

a) Xét ΔABH vuông tại H và ΔCAH vuông tại H có 

\(\widehat{ABH}=\widehat{CAH}\left(=90^0-\widehat{C}\right)\)

Do đó: ΔABH\(\sim\)ΔCAH(g-g)

Suy ra: \(\dfrac{AH}{CH}=\dfrac{BH}{AH}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(AH^2=HB\cdot HC\)(đpcm)