K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 1 2019

H B A C

Xét \(\Delta ABC\)vuông tại A ta có: 

\(AB^2+AC^2=BC^2\)( định lý Py-ta-go) (1)

Xét \(\Delta AHC;\Delta AHB\)vuông tại H ta có: 

\(AH^2+BH^2=AB^2\)( định lý Py-ta-go) (2)

\(AH^2+HC^2=AC^2\)( định lý Py-ta-go) (3)

Thay (2) và (3) vào (1) ta có:

\(2AH^2+BH^2+HC^2=BC^2\)

\(\Leftrightarrow2AH^2+BH^2+HC^2=\left(BH+HC\right)^2\)

\(\Leftrightarrow2AH^2+BH^2+HC^2=BH^2+HC^2+2.BH.HC\)

\(\Leftrightarrow2AH^2=2.BH.HC\)

\(\Leftrightarrow AH^2=BH.HC\) (4) 

\(\Leftrightarrow\frac{1}{AH^2}=\frac{1}{BH.HC}\) (5)

Thay (4) vào (3) ; (2) ta có:

\(\hept{\begin{cases}BH.HC+BH^2=AB^2\\BH.HC+HC^2=AC^2\end{cases}\Leftrightarrow}\hept{\begin{cases}BH.\left(HC+BH\right)=AB^2\\HC.\left(BH+HC\right)=AC^2\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{1}{AB^2}=\frac{1}{BH.\left(HC+BH\right)}=\frac{1}{BH.BC}\\\frac{1}{AC^2}=\frac{1}{HC.\left(BH+HC\right)}=\frac{1}{BH.BC}\end{cases}}\)

\(\Leftrightarrow\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{BH.BC}+\frac{1}{HC.BC}=\frac{BH+HC}{BH.BC.HC}=\frac{BC}{BH.BC.HC}=\frac{1}{BH.HC}\)(6)

Từ (5) và (6)

\(\Rightarrow\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\)

                             đpcm

24 tháng 2 2022

giúp vs

 

1: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

Do đó: ΔAHB=ΔAHC

=>HB=HC

=>H là trung điểm của BC

2: Ta có: H là trung điểm của BC

=>\(HB=HC=\dfrac{BC}{2}=\dfrac{12}{2}=6\left(cm\right)\)

ΔAHB vuông tại H

=>\(HA^2+HB^2=AB^2\)

=>\(HA^2=10^2-6^2=64\)

=>\(HA=\sqrt{64}=8\left(cm\right)\)

3: Xét ΔAHN có

AF là đường cao

AF là đường trung tuyến

Do đó: ΔAHN cân tại A

=>AH=AH

4: Xét ΔAHM có

AE là đường trung tuyến

AE là đường cao

Do đó: ΔAHM cân tại A

=>AM=AH

Ta có: ΔAHN cân tại A

mà AC là đường cao

nên AC là phân giác của góc HAN

=>\(\widehat{HAN}=2\cdot\widehat{HAC}\)

Ta có: ΔAHM cân tại A

mà AB là đường cao

nên AB là phân giác của góc HAM

=>\(\widehat{HAM}=2\cdot\widehat{HAB}\)

Ta có: AM=AH

AH=AN

Do đó: AM=AN

Ta có: \(\widehat{HAM}+\widehat{HAN}=\widehat{MAN}\)

=>\(\widehat{MAN}=2\cdot\left(\widehat{HAB}+\widehat{HAC}\right)\)

=>\(\widehat{MAN}=2\cdot\widehat{BAC}\)

Để A là trung điểm của MN thì AM=AN và góc MAN=180 độ

=>góc MAN=180 độ

=>\(2\cdot\widehat{BAC}=180^0\)

=>\(\widehat{BAC}=90^0\)

1) Ta có: \(BC^2=10^2=100\)

\(AB^2+AC^2=6^2+8^2=100\)

Do đó: \(BC^2=AB^2+AC^2\)(=100)

Xét ΔABC có \(BC^2=AB^2+AC^2\)(cmt)

nên ΔABC vuông tại A(Định lí Pytago đảo)

2) Ta có: ΔABC vuông tại A(gt)

nên \(S_{ABC}=\dfrac{AB\cdot AC}{2}=\dfrac{6\cdot8}{2}=24\left(cm^2\right)\)

3) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH\cdot BC=AB\cdot AC\)

\(\Leftrightarrow AH\cdot10=6\cdot8=48\)

hay AH=4,8(cm)

Vậy: AH=4,8cm

8 tháng 2 2021

em cảm ơn ạ

 

1.Cho tam giác ABC có AB=3cm,AC=4cm,BC=5cma) Chứng tỏ tam giác ABC vuông tại A.b) Trên tia đối của tia AC lấy điểm D sao cho CD=6cm.Tính độ dài đoạn thẳng BD.2.Cho tam giác ABC, biết AB = 12cm,AC = 9cm,BC = 15cm.a) Chứng tỏ tam giác ABC vuông.b) Kẻ AH vuông góc với BC tại H, biết AH = 7,2cm.Tính độ dài đoạn thẳng BH và HC.3.Cho tam giác nhọn ABC(AB<AC). Kẻ AH vuông góc với BC tại H. Tính chu vi tam giác ABC biết AC =...
Đọc tiếp

1.Cho tam giác ABC có AB=3cm,AC=4cm,BC=5cm

a) Chứng tỏ tam giác ABC vuông tại A.

b) Trên tia đối của tia AC lấy điểm D sao cho CD=6cm.Tính độ dài đoạn thẳng BD.

2.Cho tam giác ABC, biết AB = 12cm,AC = 9cm,BC = 15cm.

a) Chứng tỏ tam giác ABC vuông.

b) Kẻ AH vuông góc với BC tại H, biết AH = 7,2cm.Tính độ dài đoạn thẳng BH và HC.

3.Cho tam giác nhọn ABC(AB<AC). Kẻ AH vuông góc với BC tại H. Tính chu vi tam giác ABC biết AC = 20cm, AH = 12cm, BH = 5cm.

4.Cho tam giác ABC cân tại A, kẻ AH vuông góc với BC

a) Chứng minh tam giác AHB = tam giác AHC

b) Từ H kẻ HM vuông góc với AB tại M. Trên cạnh AC lấy điểm N sao cho BM = CN. Chứng minh HN vuông góc AC.

5.Cho tam giác ABC cân tại A, tia phân giác của góc A cắt BC tại I

a) Chứng minh tam giác AIB = tam giác AIC

b) Lấy M là trung điểm AC. Trên tia đối của tia MB lấy điểm D sao cho MB = MD. Chứng minh AD song song BC và AI vuông góc AD.

c) Vẽ AH vuông góc BD tại H, vẽ CK vuông góc BD tại K. Chứng minh BH = DK.

6.Cho tam giác ABC vuông tại A, đường phân giác BD. Kẻ AE vuông góc BD(E thuộc BD). AE cắt BC ở K.

a) Chứng minh tam giác ABE = tam giác KBE và suy ra tam giác BAK cân.

b) Chứng minh tam giác ABD = tam giác KBD và DK vuông góc BC.

c) Kẻ AH vuông góc BC(H thuộc BC). Chứng minh AK là tia phân giác của HAC.

Mọi người vẽ hình lun 6 bài giúp mình nha! Mình đang cần gấp!:(

5
7 tháng 4 2020

Ai đó giúp mình với! Mình đang cần gấp!:( Các bạn vẽ hình lun giúp mình nha! Cảm ơn các bạn nhìu!:)

8 tháng 4 2020

Do tam giác ABC có

AB = 3 , AC = 4 , BC = 5

Suy ra ta được

(3*3)+(4*4)=5*5  ( định lý pi ta go) 

9 + 16 = 25

Theo định lý py ta go thì tam giác abc vuông tại A

10 tháng 4 2018

a) vì DI là đường trung trực của BC

 suy ra {DI vuông góc vs BC tại I 

            {góc DIB = góc DIC=90độ IB=IC( gt)

xét tam giác DIB và tam giác DIC có 

IB=IC(gt)

góc DIB=góc DIC=90độ

ADI là cạnh chung 

suy ra tam giác DIB = tam giác DIC (c.g.c)

suy ra DC=DB (2 cạnh tương ứng )

xét tam giác ABC có : DC=DB(chứng minh trên)

suy ra tam giác DBC cân tại D

1: 

góc BAH+góc KAC=90 độ

góc BAH+góc ABH=90 độ

=>góc KAC=góc ABH

Xét ΔHBA vuông tại H và ΔKAC vuông tại K có

BA=AC

góc ABH=góc CAK

=>ΔHBA=ΔKAC

a: Xét tứ giác ABMC có

O là trung điêm chung của AM và BC

góc BAC=90 độ

=>ABMC là hình chữ nhật

=>AB=MC và MC//AB

b: ΔACB vuông tại A

mà AO là trung tuyến

nên OA=OB=OC

c: Xet ΔABC vuông tại A có AH là đường cao

nên 1/AH^2=1/AB^2+1/AC^2

26 tháng 5 2021

  B A C H

a, Ta có : \(BC^2=AB^2+AC^2\Rightarrow50^2=30^2+40^2\)* đúng *

Vậy tam giác ABC vuông tại A

b, Ta có : \(S_{ABC}=\frac{1}{2}.AB.AC=\frac{1}{2}.40.30=600\)cm2

c, biết mỗi cách tam giác đồng dang :))

Xét tam giác AHC và tam giác BAC ta có : 

^AHC = ^BAC = 900

^C _ chung 

Vậy tam giác AHC ~ tam giác BAC ( g.g )

\(\Rightarrow\frac{AH}{AB}=\frac{AC}{BC}\Rightarrow AH=\frac{AB.AC}{BC}=\frac{1200}{50}=24\)cm