Giair hệ phương trình sau:
\(\hept{\begin{cases}\frac{4}{y-3}+\frac{3}{x+4}=9\\\frac{3}{y-3}-\frac{5}{x+4}=14\end{cases}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\hept{\begin{cases}\frac{x}{3}-\frac{y}{4}=2\\\frac{2x}{5}+y=18\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{1}{3}x-\frac{1}{4}\left(18-\frac{2}{5}x\right)=2\\y=18-\frac{2}{5}x\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{1}{3}x-\frac{9}{2}+\frac{1}{10}x=2\\y=18-\frac{2}{5}x\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{13}{30}x=\frac{13}{2}\\y=18-\frac{2}{5}x\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=15\\y=18-\frac{2}{5}.15\end{cases}\Leftrightarrow\hept{\begin{cases}x=15\\y=12\end{cases}}}\)
\(b,\hept{\begin{cases}\frac{3}{4}x+\frac{2}{5}y=2,3\\x-\frac{3y}{5}=0,8\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{3}{4}\left(0,8+\frac{3}{5}y\right)+\frac{2}{5}y=2,3\\x=0,8+\frac{3}{5}y\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}0,6+\frac{9}{20}y+\frac{2}{5}y=2,3\\x=0,8+\frac{3}{5}y\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{17}{20}y=1,7\\x=0,8+\frac{3}{5}y\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}y=2\\x=0,8+\frac{3}{5}.2\end{cases}\Leftrightarrow\hept{\begin{cases}y=2\\x=2\end{cases}}}\)
ĐK: \(x+y\ne0;x\ge2\)
\(\hept{\begin{cases}\frac{4}{x+y}+3\sqrt{4x-8}=14\\\frac{5-x-y}{x+y}-2\sqrt{x-2}=\frac{-5}{2}\end{cases}}\)
<=> \(\hept{\begin{cases}\frac{4}{x+y}+6\sqrt{x-2}=14\\\frac{5}{x+y}-2\sqrt{x-2}=\frac{-3}{2}\end{cases}}\)
<=> \(\hept{\begin{cases}\frac{4}{x+y}+6\sqrt{x-2}=14\\\frac{5}{x+y}-2\sqrt{x-2}=\frac{-3}{2}\end{cases}}\)
Đặt: \(\frac{1}{x+y}=u\ne0;\sqrt{x-2}=v\ge0\)
ta có hệ: \(\hept{\begin{cases}4u+6v=14\\5u-2v=\frac{-3}{2}\end{cases}}\Leftrightarrow\hept{\begin{cases}u=\frac{1}{2}\\v=2\end{cases}}\)thỏa mãn
khi đó ta có: \(\hept{\begin{cases}\frac{1}{x+y}=\frac{1}{2}\\\sqrt{x-2}=2\end{cases}}\Leftrightarrow\hept{\begin{cases}y=-4\\x=6\end{cases}}\)thỏa mãn
Vậy:...
\(\hept{\begin{cases}\frac{x}{3}+\frac{y}{12}-\frac{z}{4}=1\\\frac{x}{10}+\frac{y}{5}+\frac{z}{3}=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}4x+y-3z=12\\3x+6y+10z=30\end{cases}}\)
\(\Rightarrow7\left(x+y+z\right)=42\)
\(\Leftrightarrow x+y+z=6\)
cậu cứ nhân 5 vào phương trình (2)
cộng 2 phương trình lại cậu sẽ ra được x+y-1=2
thế cái vừa tìm được vào 1 trong 2 phương trình thi sẽ ra thêm một phương trình 2x-y=-13
giải hệ rồi tìm được x và y
Hệ ĐK \(y\ne3;x\ne-4\)
\(\Leftrightarrow\hept{\begin{cases}\frac{12}{y-3}+\frac{9}{x+4}=27\\\frac{12}{y-3}-\frac{20}{x+4}=56\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{29}{x+4}=-29\\\frac{4}{y-3}+\frac{3}{x+4}=9\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{1}{x+4}=-1\\\frac{1}{y-3}=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+4=-1\\y-3=\frac{1}{3}\end{cases}\Leftrightarrow\hept{\begin{cases}x=-5\\y=\frac{10}{3}\end{cases}\left(tm\right)}}\)
Vậy HPT có nghiệm ( -5; 10/3)