K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 1 2019

Thêm đk: a,b>0

Theo BĐT Cô si cho 4 số: \(a^4+b^4+2=a^4+b^4+1+1\ge4\sqrt[4]{a^4b^411}=4ab\)

Dấu "=" xảy ra \(\Leftrightarrow a^4=b^4=1\Leftrightarrow a=b=1\)

24 tháng 1 2019

@tth@ BĐT cosi ap dụng cho các số không âm  mà ở bài này a^4, b^4, 1 đều là các số không âm nên không  cần thêm điều kiện nữa em nhé!

31 tháng 5 2018

\(a^4+b^4+2=a^4+b^4+1+1\ge4\sqrt[4]{a^{4\cdot}\cdot b^4\cdot1\cdot1}=4ab\left(đpcm\right)\)

Dấu ''='' xảy ra khi a = b

31 tháng 5 2018

Áp dụng BĐT Cauchy cho 4 số không âm , ta có :

a4 + b4 + 1 + 1 ≥ \(4\sqrt[4]{a^4.b^4.1.1}=4ab\)

Đẳng thức xảy ra khi và chỉ khi : a = b = 1

4 tháng 1 2020

ĐẾ sai

15 tháng 4 2019

1. (a+b)^2 ≥ 4ab

<=> a2+2ab+b2≥ 4ab

<=> a2+2ab+b2-4ab≥ 0

<=> a2-2ab+b2≥ 0

<=> (a-b)^2 ≥ 0 ( luôn đúng )

15 tháng 4 2019

2. a^2 + b^2 + c^2 ≥ ab + bc + ca

<=> 2a^2 + 2b^2 + 2c^2 ≥ 2ab + 2bc + 2ca

<=> 2a^2 + 2b^2 + 2c^2 - 2ab - 2bc - 2ca ≥ 0

<=> (a^2- 2ab+b^2) + (b^2-2bc+c^2) + (c^2-2ca+a^2) ≥ 0

<=> (a-b)^2 + (b-c)^2 + (c-a)^2 ≥ 0 ( luôn đúng)

1 tháng 8 2016

= (x2-7x+6)(x2-7x+12)+9

đặt x2-7x+9=a ta đc 

(a-3)(a+3)+9=a2-32+9=a2 >= 0 với mọi x ( đpcm)

1 tháng 8 2016

Chứng minh rằng các biểu thức sau luôn dương với mọi x

a) a+ b2 + 2 - 4ab         (>= 0)

b) (x-1)(x-3)(x-4)(x-6)+9             (>=0)

= (x2-7x+6)(x2-7x+12)+9

đặt x2-7x+9=a ta đc 

(a-3)(a+3)+9=a2-32+9=a2 >= 0 với mọi x ( đpcm)

15 tháng 8 2020

Bài 1 : 

a) \(x^2+y^2\)

\(\Leftrightarrow x^2+2xy+y^2-2xy\)

\(\Leftrightarrow\left(x+y\right)^2-2xy=\left(-3\right)^2-2.\left(-28\right)=65\)

b) \(x^3+y^3\)

\(\Leftrightarrow\left(x+y\right)\left(x^2-xy+y^2\right)\)

\(\Leftrightarrow\left(x+y\right)\left(x^2+2xy+y^2-3xy\right)\)

\(\Leftrightarrow\left(x+y\right)\left[\left(x+y\right)^2-3xy\right]=\left(-3\right)\left[\left(-3\right)^2-3.\left(-28\right)\right]=-279\)

c) \(x^4+y^4\)

\(\Leftrightarrow\left(x+y\right)^4-4x^3y-4xy^3-6x^2y^2=\left(-3\right)^4-4\left(-28\right).65-6\left(-28\right)^2=2657\)

15 tháng 8 2020

Bài 3:

Có:    \(x^3+y^3+z^3=\left(x+y\right)^3-3xy\left(x+y\right)+z^3\)

=>     \(x^3+y^3+z^3=\left(-z\right)^3-3xy.-z+z^3\)

=>     \(x^3+y^3+z^3=-z^3+z^3+3xyz=3xyz\)

=> TA CÓ ĐPCM.

VẬY      \(x+y+z=0\Rightarrow x^3+y^3+z^3=3xyz\)