tìm x để :
a, (x+5)(3x-1)>0
b, (x-1)(x-3)<0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) (x+2)(x-3)<0
Để (x+2)(x-3)<0 <=> x+2 và x-3 trái dấu
Mà x+2 > x-3 => x+2> 0 và x-3 <0
=> x>-2 và x < 3
Vậy -2 < x < 3
b )4(3x+1)(5-2x)>0
Vì 4 > 0 , Để 4(3x+1)(5-2x)>0 <=> 3x+1 > 0 và 5-2x>0
<=> x>-1/3 và x < 5/2
Vậy -1/3 < x < 5/2
a) \(X^2+5X< 0\)
<=> \(X\left(X+5\right)< 0\)
<=> TH1: \(x< 0;x+5>0\Leftrightarrow-5< x< 0\)
TH2: \(x>0;x+5< 0\Leftrightarrow0< x< -5\) (vô lí)
Vậy \(-5< x< 0\)
5)
để \(\frac{5x-3}{x+1}\)là số nguyên
\(5x-3⋮x+1\)
\(x+1⋮x+1\)
\(\Rightarrow5\left(x+1\right)⋮x+1\)
\(5x-3-\left(5x-5\right)⋮x+1\)
\(-2⋮x+1\)
\(\Rightarrow x+1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
x+1 | 1 | -1 | 2 | -2 |
x | 0 | -2 | 1 | -3 |
Vậy \(x\in\left\{0;-2;1;-3\right\}\)
2. \(A\left(x\right)=x^2+3x-4=x^2+4x-x-4=x\left(x+4\right)-\left(x+4\right)=\left(x+4\right)\left(x-1\right)\)
A(x) >0 => (x+4)(x-1) cùng dấu
TH1: x+4; x-1 cùng âm \(\hept{\begin{cases}x+4< 0\\x-1< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x< -4\\x< 1\end{cases}\Leftrightarrow}x< -4}\)
TH2: x+4;x-1 cùng dương \(\hept{\begin{cases}x+4>0\\x-1>0\end{cases}\Leftrightarrow\hept{\begin{cases}x>-4\\x>1\end{cases}\Leftrightarrow}x>1}\)
3. \(A\left(x\right)=\left(x+4\right)\left(x-1\right)\)
A(x) <0 => \(\orbr{\begin{cases}x+4< 0\\x-1< 0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x< -4\\x< 1\end{cases}}\)
Vậy x<-4 hoặc x<1 thì A(x)<0
\(a)\left(x+5\right)\left(3x-1\right)>0\)
Xét từng trường hợp:
Vậy \(\orbr{\begin{cases}x>\frac{1}{3}\\x< -5\end{cases}}\)thì \(\left(x+5\right)\left(3x-1\right)>0\)
\(b)\left(x-1\right)\left(x-3\right)< 0\)
Xét các trường hợp :
Vậy \(1< x< 3\)thì \(\left(x-1\right)\left(x-3\right)< 0\)