Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải phương trình:
\(\sqrt{2x+4+6\sqrt{2x-5}}+\sqrt{2x-4-2\sqrt{2x-5}}=4\)
điều kiện 2x-5+3 >=0 và 2x-5-1>=0
<=>x>=1 và x>=3
=> x>=1
từ pt đã cho ta có
căn 2x-5+6(2x-5)+9 + căn 2x-5-2(2x-5)+1 = 4
<=>(2x-5+3)+(2x-5-1)=4
<=>4x-8=4
<=> 4x=12
<=>x=3(TMDKXD)
vậy x=3
\(ĐKXĐ:x\ge\frac{5}{2}\)
Ta có: \(\sqrt{2x+4+6\sqrt{2x-5}}+\sqrt{2x-4-2\sqrt{2x-5}}=4\)
\(\Leftrightarrow\sqrt{2x-5+6\sqrt{2x-5}+9}+\sqrt{2x-5-2\sqrt{2x-5}+1}=4\)
\(\Leftrightarrow\sqrt{\left(\sqrt{2x-5}+3\right)^2}+\sqrt{\left(\sqrt{2x-5}-1\right)^2}=4\)
\(\Leftrightarrow\left|\sqrt{2x-5}+3\right|+\left|\sqrt{2x-5}-1\right|=4\)
\(\Leftrightarrow\left|\sqrt{2x-5}+3\right|+\left|1-\sqrt{2x-5}\right|=4\)(1)
Có : \(VT\ge\left|\sqrt{2x-5}+3+1-\sqrt{2x-5}\right|=4\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\sqrt{2x-5}+3\ge0\\1-\sqrt{2x-5}\ge0\end{cases}\Leftrightarrow-3\le\sqrt{2x-5}\le1}\)
\(\Leftrightarrow0\le2x-5\le1\)
\(\Leftrightarrow5\le2x\le6\)
\(\Leftrightarrow\frac{5}{2}\le x\le3\)
KẾt hợp với ĐKXĐ được \(\frac{5}{2}\le x\le3\)
Vậy pt có nghiệm nằm trong khoảng \(\frac{5}{2}\le x\le3\)
điều kiện 2x-5+3 >=0 và 2x-5-1>=0
<=>x>=1 và x>=3
=> x>=1
từ pt đã cho ta có
căn 2x-5+6(2x-5)+9 + căn 2x-5-2(2x-5)+1 = 4
<=>(2x-5+3)+(2x-5-1)=4
<=>4x-8=4
<=> 4x=12
<=>x=3(TMDKXD)
vậy x=3
\(ĐKXĐ:x\ge\frac{5}{2}\)
Ta có: \(\sqrt{2x+4+6\sqrt{2x-5}}+\sqrt{2x-4-2\sqrt{2x-5}}=4\)
\(\Leftrightarrow\sqrt{2x-5+6\sqrt{2x-5}+9}+\sqrt{2x-5-2\sqrt{2x-5}+1}=4\)
\(\Leftrightarrow\sqrt{\left(\sqrt{2x-5}+3\right)^2}+\sqrt{\left(\sqrt{2x-5}-1\right)^2}=4\)
\(\Leftrightarrow\left|\sqrt{2x-5}+3\right|+\left|\sqrt{2x-5}-1\right|=4\)
\(\Leftrightarrow\left|\sqrt{2x-5}+3\right|+\left|1-\sqrt{2x-5}\right|=4\)(1)
Có : \(VT\ge\left|\sqrt{2x-5}+3+1-\sqrt{2x-5}\right|=4\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\sqrt{2x-5}+3\ge0\\1-\sqrt{2x-5}\ge0\end{cases}\Leftrightarrow-3\le\sqrt{2x-5}\le1}\)
\(\Leftrightarrow0\le2x-5\le1\)
\(\Leftrightarrow5\le2x\le6\)
\(\Leftrightarrow\frac{5}{2}\le x\le3\)
KẾt hợp với ĐKXĐ được \(\frac{5}{2}\le x\le3\)
Vậy pt có nghiệm nằm trong khoảng \(\frac{5}{2}\le x\le3\)