K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 10 2018

ĐKXĐ: \(x\ge\dfrac{5}{2}\)

\(\sqrt{2x+4+6\sqrt{2x-5}}+\sqrt{2x-4-2\sqrt{2x-5}}=4\)

\(\Leftrightarrow\sqrt{\left(2x-5\right)+2.\sqrt{2x-5}\cdot3+9}+\sqrt{\left(2x-5\right)-2\sqrt{2x-5}.1+1}=4\)\(\Leftrightarrow\sqrt{\left(2x-5+3\right)^2}+\sqrt{\left(2x-5-1\right)^2}=4\)

\(\Leftrightarrow\left|2x-2\right|+\left|2x-6\right|=4\)

\(\Leftrightarrow\left|x-1\right|+\left|x-3\right|=4\)

Xét x<1:

=>1-x+3-x=4

=>-2x=0

=>x=0

Xét \(1\le x< 3\)

=>x-1+3-x=4

=>0x=2(vô lý)

Xét \(x\ge3\)

=>x-1+x-3=4

=>2x=-2

=>x=-1

22 tháng 1 2019

điều kiện 2x-5+3 >=0 và 2x-5-1>=0

<=>x>=1 và x>=3

=> x>=1

từ pt đã cho ta có

căn 2x-5+6(2x-5)+9 + căn 2x-5-2(2x-5)+1 = 4

<=>(2x-5+3)+(2x-5-1)=4

<=>4x-8=4

<=> 4x=12

<=>x=3(TMDKXD)

vậy x=3

22 tháng 1 2019

\(ĐKXĐ:x\ge\frac{5}{2}\)

Ta có: \(\sqrt{2x+4+6\sqrt{2x-5}}+\sqrt{2x-4-2\sqrt{2x-5}}=4\)

\(\Leftrightarrow\sqrt{2x-5+6\sqrt{2x-5}+9}+\sqrt{2x-5-2\sqrt{2x-5}+1}=4\)

\(\Leftrightarrow\sqrt{\left(\sqrt{2x-5}+3\right)^2}+\sqrt{\left(\sqrt{2x-5}-1\right)^2}=4\)

\(\Leftrightarrow\left|\sqrt{2x-5}+3\right|+\left|\sqrt{2x-5}-1\right|=4\)

\(\Leftrightarrow\left|\sqrt{2x-5}+3\right|+\left|1-\sqrt{2x-5}\right|=4\)(1)

Có : \(VT\ge\left|\sqrt{2x-5}+3+1-\sqrt{2x-5}\right|=4\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\sqrt{2x-5}+3\ge0\\1-\sqrt{2x-5}\ge0\end{cases}\Leftrightarrow-3\le\sqrt{2x-5}\le1}\)

                                

                                                                             \(\Leftrightarrow0\le2x-5\le1\)

                                                                              \(\Leftrightarrow5\le2x\le6\)

                                                                             \(\Leftrightarrow\frac{5}{2}\le x\le3\)

KẾt hợp với ĐKXĐ được \(\frac{5}{2}\le x\le3\)

Vậy pt có nghiệm nằm trong khoảng \(\frac{5}{2}\le x\le3\)

26 tháng 8 2020

Bài làm:

đk: \(x\ge3\)

Pt <=> \(\left(\sqrt{x-\sqrt{2x-5}-4}+\sqrt{x+\sqrt{2x-5}-4}\right)^2=\left(\sqrt{2}\right)^2\)

<=> \(x-\sqrt{2x-5}-4+x+\sqrt{2x-5}-4+2\sqrt{\left(x-4\right)^2-2x+5}=2\)

<=> \(2x-10=-2\sqrt{x^2-4x+4-2x+5}\)

<=> \(2x-10+2\sqrt{x^2-6x+9}=0\)

<=> \(2x-10+2\sqrt{\left(x-3\right)^2}=0\)

<=> \(2\left|x-3\right|=10-2x\)

<=> \(\left|x-3\right|=5-x\Leftrightarrow\orbr{\begin{cases}x-3=5-x\\x-3=x-5\end{cases}}\Leftrightarrow\orbr{\begin{cases}2x=8\\0x=-2\left(∄x\right)\end{cases}\Rightarrow}x=4\)

25 tháng 8 2018

<=> \(\sqrt{\left(x+1\right)^2+4}\)+\(\sqrt{\left(x\sqrt{2}+\sqrt{2}\right)^2+4}\)= 4

NX: \(\left(x+1\right)^2+4\ge4\)với mọi x

\(\left(x\sqrt{2}+\sqrt{2}\right)^2+4\ge4\)với mọi x

=>\(\sqrt{\left(x+1\right)^2+4}\)\(\ge\)2  với mọi x

\(\sqrt{\left(x\sqrt{2}+\sqrt{2}\right)^2+4}\)\(\ge\)2 với mọi x

=>VT=VP <=> Dấu = xảy ra

bạn tự làm tiếp nhé:))

20 tháng 9 2016

câu d tách hđt r đánh giá . VP=(x-6)^2+2>=2 còn VP <=2 =>....
câu c tương tự 
câu b c bình phương oặc đặt ẩn :3