Từ I ở ngoài (O) kẻ các tiếp tuyến IA và IB với (O) (A,B \(\in\)(O))Kẻ dây AC của (O) và AC//IB.CI cắt (O) ở điểm nữa là D;AD cắt IB ở E
CMR:E là trung điểm của AB.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc ABO+góc ACO=180 độ
=>ABOC nội tiếp
b: Xét ΔIAN và ΔIBA có
góc IAN=góc IBA
góc AIN chung
=>ΔIAN đồng dạng với ΔIBA
=>IA^2=IN*IB
a: Xét tứ giác ACBO có \(\widehat{CAO}+\widehat{CBO}=90^0+90^0=180^0\)
nên ACBO là tứ giác nội tiếp
b: Xét tứ giác OIBD có \(\widehat{OID}=\widehat{OBD}=90^0\)
nên OIBD là tứ giác nội tiếp
=>\(\widehat{IBO}=\widehat{IDO}\)
c: Xét tứ giác OAEI có \(\widehat{OAE}+\widehat{OIE}=90^0+90^0=180^0\)
nên OAEI là tứ giác nội tiếp
=>\(\widehat{OEI}=\widehat{OAI}\)
=>\(\widehat{OEI}=\widehat{OAB}=\widehat{OBA}=\widehat{IBO}\)
=>\(\widehat{OEI}=\widehat{ODI}\)
=>ΔOED cân tại O
=>OE=OD
a: Xét tứ giácc ABOC có
góc OBA+góc OCA=180 độ
nen ABOC là tứ giác nội tiếp
b: Xét ΔCAO vuông tại C và ΔCDE vuông tại C có
góc CAO=góc CDE
Do đó: ΔCAO đồng dạng vơi ΔCDE
=>CA/CD=CO/CE
=>CA/CO=CD/CE
Xét ΔCAD và ΔCOE có
CA/CO=CD/CE
góc ACD=góc OCE
Do đo: ΔCAD đồng dạng với ΔCOE
1: Xét (O) có
AB là tiếp tuyến
AC là tiếp tuýen
Do đó: AB=AC
hay A nằm trên đường trung trực của BC(1)
Ta có: OB=OC
nên O nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra OA⊥BC