Tìm min
A = x - 2\(\sqrt{x+1}\) - 2\(\sqrt{x-2}\) + 10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A= \(\sqrt{x-1-2\sqrt{x-1}+1}+\sqrt{x-1+2\sqrt{x-1}+1}\)
=\(\sqrt{\left(\sqrt{x-1}-1\right)^2}+\sqrt{\left(\sqrt{x-1}+1\right)^2}\)
=\(\left|\sqrt{x-1}-1\right|+\left|\sqrt{x-1}+1\right|\)
\(=\left|1-\sqrt{x-1}\right|+\left|\sqrt{x-1}+1\right|\)
\(\ge\left|\sqrt{x-1}+1+1-\sqrt{x-1}\right|\)
=2.
dấu = khi và chỉ khi \(\left(\sqrt{x-1}+1\right).\left(1-\sqrt{x-1}\right)=0\)
\(A=\sqrt{x-2\sqrt{x-1}}+\sqrt{x+2\sqrt{x-1}}\)
\(=\sqrt{x-1-2\sqrt{x-1}+1}+\sqrt{x-1+2\sqrt{x-1}+1}\)
\(=\sqrt{\left(\sqrt{x-1}-1\right)^2}+\sqrt{\left(\sqrt{x-1}+1\right)^2}\)
\(=\left|\sqrt{x-1}-1\right|+\left|\sqrt{x-1}+1\right|\)
\(=\left|1-\sqrt{x-1}\right|+\left|\sqrt{x-1}+1\right|\)
\(\ge\left|1-\sqrt{x-1}+\sqrt{x-1}+1\right|=2\)
Dấu "=" xảy ra \(\Leftrightarrow\left(1-\sqrt{x-1}\right)\left(\sqrt{x-1}+1\right)\ge0\Leftrightarrow0\le x\le2\)
Vậy \(A_{min}=2\) tại \(0\le x\le2\)
ĐK: \(x\ge1\)
\(A=\sqrt{\left(x-1\right)-2\sqrt{x-1}+1}+\sqrt{\left(x-1\right)+2\sqrt{x-1}+1}\)
\(=\sqrt{\left(\sqrt{x-1}-1\right)^2}+\sqrt{\left(\sqrt{x-1}+1\right)^2}\)
\(=\left|1-\sqrt{x-1}\right|+\left|\sqrt{x-1}+1\right|\)
\(\ge\left|1-\sqrt{x-1}+\sqrt{x-1}+1\right|=2\)
Đẳng thức xảy ra \(\Leftrightarrow\left(1-\sqrt{x-1}\right)\left(\sqrt{x-1}+1\right)\ge0\)
\(\Leftrightarrow1\le x\le2\)
a) \(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}\)
\(=\sqrt{x-1+2\sqrt{x-1}+1}+\sqrt{x-1-2\sqrt{x-1}+1}\)
\(=\sqrt{\left(\sqrt{x-1}+1\right)^2}+\sqrt{\left(\sqrt{x-1}-1\right)^2}\)
\(=\left|\sqrt{x-1}+1\right|+\left|\sqrt{x-1}-1\right|\)
b) \(\left|\sqrt{x-1}+1\right|+\left|\sqrt{x-1}-1\right|\)
\(=\left|\sqrt{x-1}+1\right|+\left|1-\sqrt{x-1}\right|\)
\(\ge\left|\sqrt{x-1}+1+1-\sqrt{x-1}\right|=\left|2\right|=2\)
Dấu "=" xảy ra \(\Leftrightarrow1\le x\le2\)
a) ĐKXĐ : \(3\le x\le7\)
Ta có \(A=1.\sqrt{x-3}+1.\sqrt{7-x}\)
\(\le\sqrt{\left(1+1\right)\left(x-3+7-x\right)}=\sqrt{8}\)(BĐT Bunyacovski)
Dấu "=" xảy ra <=> \(\dfrac{1}{\sqrt{x-3}}=\dfrac{1}{\sqrt{7-x}}\Leftrightarrow x=5\)
a) \(\orbr{\orbr{\begin{cases}x\ge\sqrt{5}\\x\le-\sqrt{5}\end{cases}}}\) b)\(\orbr{\begin{cases}x\ge1\\x\le-3\end{cases}}\)
c)\(\orbr{\begin{cases}\hept{\begin{cases}x\ge\sqrt{2}\\x\ne\sqrt{3}\end{cases}}\\\hept{\begin{cases}x\le-\sqrt{2}\\x\ne-\sqrt{3}\end{cases}}\end{cases}}\)
\(a,ĐK:\dfrac{3}{x+7}\ge0\Leftrightarrow x+7>0\left(3>0;x+7\ne0\right)\Leftrightarrow x>-7\\ b,ĐK:\dfrac{-2}{5-x}\ge0\Leftrightarrow5-x< 0\left(2-< 0;5-x\ne0\right)\Leftrightarrow x>5\\ c,ĐK:x^2-7x+10\ge0\Leftrightarrow\left(x-5\right)\left(x-2\right)\ge0\\ \Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-5\ge0\\x-2\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x-5\le0\\x-2\le0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\ge5\\x\le2\end{matrix}\right.\)
\(d,ĐK:x^2-8x+10\ge0\Leftrightarrow\left(x-4-\sqrt{6}\right)\left(x-4+\sqrt{6}\right)\ge0\\ \Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-4-\sqrt{6}\ge0\\x-4+\sqrt{6}\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x-4-\sqrt{6}\le0\\x-4+\sqrt{6}\le0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge4+\sqrt{6}\\x\ge4-\sqrt{6}\end{matrix}\right.\\\left\{{}\begin{matrix}x\le4+\sqrt{6}\\x\le4-\sqrt{6}\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\ge4+\sqrt{6}\\x\le4-\sqrt{6}\end{matrix}\right.\)
\(e,ĐK:9x^2+1\ge0\Leftrightarrow x\in R\left(9x^2+1\ge1>0\right)\)
\(\sqrt{x-2+2\sqrt{x+1}}+\sqrt{x+10+6\sqrt{x+1}}=2\sqrt{x+2+2\sqrt{x+1}}\)
\(\Leftrightarrow\sqrt{x+1}+1+\left|\sqrt{x+1}-3\right|=2\cdot\left|\sqrt{x+1}-1\right|\)
Đặt \(y=\sqrt{x+1}\left(y\ge0\right)\)PT đã cho trở thành
\(y+1+\left|y-3\right|=2\left|y-1\right|\)
Nếu \(0\le y\le1:y+1+3-y=2-2y\Leftrightarrow y=-1\)(loại)
Nếu \(1\le y\le3:y+1+3-y=2y-2\Leftrightarrow y=3\)
Nếu y>3: y+1-y-3=2y-2 (vô nghiệm)
Với y=3 <=> x+1=9 <=> x=8
Vậy pt có 1 nghiệm x=8
giê ơt nha bn
k dễ đâu bạn ơi =))))