Tìm giá trị lớn nhất của A biết: A = 2018 - 2(x2+1)2018
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=2018+3x-x^2=-\left(x^2-3x-2018\right)\)
\(=-\left(x^2-3x+\frac{9}{4}-\frac{8081}{4}\right)\)
\(=-\left[\left(x-\frac{3}{2}\right)^2-\frac{8081}{4}\right]=-\left(x-\frac{3}{2}\right)^2+\frac{8081}{4}\le\frac{8081}{4}\)
Vậy\(A_{max}=\frac{8081}{4}\Leftrightarrow x-\frac{3}{2}=0\Leftrightarrow x=\frac{3}{2}\)
a) M=2018+|1-2x|
nhận thấy:|1-2x|>=0 với mọi x=> M =2018+|1-2x|>=2018
dấu"=" xảy ra <=>|1-2x|=0<=>1-2x=0=>2x=1=>x=1/2
vậy giá trị nhỏ nhất của M=2018<=>x=1/2
b)N=2018-(1-2x)^2018
nhận thấy;(1-2x)^2018>=0 với mọi x=>-(1-2x)<=0 với mọi x=>N=2018-(1-2x)^2018<=2018
dấu bằng xảy ra <=>(1-2x)^2018=0=>1-2x=0=>2x=1=>x=1/2
vậy giá trị lớn nhất của N=2018<=>x=1/2
c)P=7+|x-1|+|2-x|
áp dụng |A|+|B|>=|A+B|. dấu "=" xảy ra<=>A.B=0 ta có
P=7+|x-1|+|2-x|>=7+|x-1+2-x|=7+1+8
dấu "=" xảy ra <=>(x-1). (2-x)=0
<=>x-1=0 hoặc 2-x=0<=>x=1 hoặc x=2
vậy giá trị nhỏ nhất của P=8<=> x=1 hoặc x=2
Đạt làm sai rùi nha
A = |x-1|+|2-x| + 2018
>= |x-1+2-x| + 2018
= 1+2018 = 2019
Dấu "=" xảy ra <=> (x-1).(2-x) >= 0 <=> 1 < = x < = 2
Vậy ..............
Tk mk nha
\(A=2018+2\left(x^2+1\right)^{2018}\)
Để A lớn nhất => 2(x2+1)2018 nhỏ nhất \(\left(1\right)\)
Ta thấy:
\(2\left(x^2+1\right)^{2018}\ge0\)\(\left(2\right)\)
Từ (1); (2)\(\Rightarrow\left(x^2+1\right)^{2018}=0\) \(\Rightarrow x^2+1=0\)
\(\Rightarrow x^2=-1\)(LOẠI)
Nếu (x2 + 1)2018 = 1
\(\Rightarrow\orbr{\begin{cases}x^2+1=1\\x^2+1=-1\left(L\right)\end{cases}}\)
\(\Leftrightarrow x=0\)(TM)
\(\Rightarrow A=2018-2.1=2016\)
Vậy GTLN của A là 2016 tại x = 0