So sánh: \(A=\frac{10^8-1}{10^7-1}\)và \(B=\frac{10^7-1}{10^6-1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(10A=10\left(\frac{10^7+1}{10^8+1}\right)=\frac{10^8+10}{10^8+1}=\frac{10^8+1+9}{10^8+1}=1+\frac{9}{10^8+1}\)
\(10B=\frac{10^7+10}{10^7+1}=\frac{10^7+1+9}{10^7+1}=1+\frac{9}{10^7+1}\)
Vì \(10^8+1>10^7+1\Rightarrow\frac{9}{10^8+1}< \frac{9}{10^7+1}\)
\(\Rightarrow10A< 10B\)
\(\Rightarrow A< B\)
dễ thôi
A=\(\frac{10^7+5}{10^7-8}=\frac{10^7-8+13}{10^7-8}=1+\frac{13}{10^7-8}\)
B=\(\frac{10^8+6}{10^8-7}=\frac{10^8-7+13}{10^8-7}=1+\frac{13}{10^8-7}\)
\(10^8>10^7nen10^8-7>10^7-8\)
=> \(\frac{13}{10^8-7}< \frac{13}{10^7-8}hayB< A\)
b/ Ta có
\(A-B=\frac{3}{8^3}+\frac{7}{8^4}-\frac{7}{8^3}-\frac{3}{8^4}\)
\(=\frac{4}{8^4}-\frac{4}{8^3}< 0\)
Vậy A < B
c/ Đặt \(10^7=a\)thì ta có
\(A=\frac{a+5}{a-8};B=\frac{10a+6}{10a-7}\)
Giả sử A>B thì ta có
\(\frac{a+5}{a-8}>\frac{10a+6}{10a-7}\)
\(\Leftrightarrow10a^2+43a-35>10a^2-574a-348\)
\(\Leftrightarrow617a+313>0\)(đúng)
Vậy A>B
c/ Đặt \(10^{1991}=a\)thì ta có
\(A=\frac{10a+1}{a+1};B=\frac{100a+1}{10a+1}\)
Giả sử A>B thì ta có
\(\frac{10a+1}{a+1}>\frac{100a+1}{10a+1}\)
\(\Leftrightarrow\left(10a+1\right)^2>\left(100a+1\right)\left(a+1\right)\)
\(\Leftrightarrow-81a>0\)(sai)
Vậy A < B
a/ Thì quy đồng là ra nhé
a,b,c,d giống nhau cùng nhân A và B với 1 số nào đấy tách ra r` so sạmh
Ta có: \(\frac{n}{n+1}< 1\)
\(\Rightarrow\frac{n}{n+1}< \frac{n+2}{n+1+2}\)
\(\Rightarrow\frac{n}{n+1}< \frac{n+2}{n+3}\)
\(\Rightarrow A< B\)
b. mình ko biết làm
c. mình cũng ko biết làm
d.Ta có :\(\frac{10^{1993}+1}{10^{1992}+1}>1\)
\(\Rightarrow\frac{10^{1993}+1}{10^{1992}+1}>\frac{10^{1993}+1+9}{10^{1992}+1+9}\)
\(\Rightarrow\frac{10^{1993}+1}{10^{1992}+1}>\frac{10^{1992}.10+10.1}{10^{1991}.10+10.1}\)
\(\Rightarrow\frac{10^{1993}+1}{10^{1992}+1}>\frac{10\left(10^{1992}+1\right)}{10\left(10^{1991}+1\right)}\)
\(\Rightarrow\frac{10^{1993}+1}{10^{1992}+1}>\frac{10^{1992}+1}{10^{1991}+1}\)
\(\Rightarrow A>B\)
Chúc bạn học tốt nhé
a) ta có A=\(\frac{10^7-8+13}{10^7-8}=1+\frac{13}{10^7-8}\)
B=\(\frac{10^8-7+13}{10^8-7}=1+\frac{13}{10^8-7}\)
Vì 10^7-8 <10^8-7 nên 1+ 13/10^7-8>1+13/10^8-7
Vậy A>B
dễ Thấy rằng :
\(\frac{1}{5}>\frac{1}{10}\text{ nên }\frac{1}{5}+\left(\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}\right)>\frac{1}{10}+\left(\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}\right)\)
Vậy ta có a > b
A = 1/5 + 1/6 + 1/7 + 1/8 + 1/9
B = 1/6 + 1/7 + 1/8 + 1/9 + 1/10
Ta thấy cả A và B đều có các số hạng là 1/6; 1/7; 1/8 và 1/9.
Bỏ các số hạng đó, A chỉ còn 1/5 và B chỉ còn 1/10.
Vì 1/5 > 1/10 nên A > B.
Chúc bạn học tốt.
😁😁😁
Lời giải:
$A=\frac{10(10^7-1)+9}{10^7-1}=10+\frac{9}{10^7-1}< 10+\frac{9}{10^6-1}=\frac{10^7-1}{10^6-1}=B$