tim x thuoc z
(x2+7).(x2-49)<0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\left(x2+7\right).\left(x2-49\right)< 0\)
\(\left(x2+7\right).\left(x2-49\right)< 0\) chứng tỏ hai vế \(\left(x2+7\right)\) và \(\left(x2-49\right)\) khác dấu nhau .
\(\left\{{}\begin{matrix}\left(x2+7\right)>0\\\left(x2-49\right)< 0\end{matrix}\right.\)
Vì \(\left(x2+7\right)\) > \(\left(x2-49\right)\)
Nên ta có:
\(\left\{{}\begin{matrix}\left(x2+7\right)>0\\\left(x2-49\right)< 0\end{matrix}\right.\)\(\Rightarrow\)\(\left\{{}\begin{matrix}\left(x+7\right)=0\\\left(x-49\right)=0\end{matrix}\right.\)\(\Rightarrow\)\(\left\{{}\begin{matrix}x=-7\\x=49\end{matrix}\right.\)
Vậy hai số nguyên đó là -7 và 49 .
Còn phần còn lại bạn làm tương tự nhé !
Ta có :
\(\left(x-7\right)\left(y+3\right)< 0\)
Trường hợp 1 :
\(\hept{\begin{cases}x-7< 0\\y+3>0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 7\\y>-3\end{cases}}}\)
Trường hợp 2 :
\(\hept{\begin{cases}x-7>0\\y+3< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x>7\\y< -3\end{cases}}}\)
Vậy hoặc \(x< 7\) và \(y>-3\) hoặc \(x>7\) và \(y< -3\)
Chúc bạn học tốt ~
a, => [x-2] và [7-x] cùng dấu
Xét 2 trường hợp cùng >0 và cùng<0
b, tương tự
c, xét 2 trường hợp khác dấu
Có gì ko h bạn cứ hỏi nha!
\(\left(x-1\right)\left(x^2+1\right)=0\)
\(\Rightarrow x-1=0\)
\(\Rightarrow x=1\)
\(\left(x^2-1\right)\left(49-x^2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x^2-1=0\\49-x^2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\x=7\end{cases}}}\)
Bài 1:
a) Ta có: (x2 - 36)(x2 -25)= 0
\(\Leftrightarrow\)(x2 - 62)(x2 - 52)= 0
\(\Leftrightarrow\)(x - 6)(x + 6)(x - 5)(x + 5)= 0
\(\Leftrightarrow\)\(\orbr{\begin{cases}x-6=0\\x+6=0\end{cases}}\)
\(\orbr{\begin{cases}x-5=0\\x+5=0\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=6\\x=-6\end{cases}}\)
\(\orbr{\begin{cases}x=5\\x=-5\end{cases}}\)
b) \(CMTT\)câu a
Ta có:\(\orbr{\begin{cases}x=7\\x=-7\end{cases}}\)
\(\orbr{\begin{cases}x=8\\x=-8\end{cases}}\)