A=
a) ĐkXĐ, rút gọn A
b) Khi x TMĐk tìm GTNN của bt B=A(x-1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{x\sqrt{x}+1}{x-1}-\frac{x-1}{\sqrt{x}+1}\)
\(A=\frac{x\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}-\frac{\left(x-1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(A=\frac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}-\frac{\left(x-1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(A=\frac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)-\left(x-1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(A=\frac{\left(x-\sqrt{x}+1\right)-\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)}\)
\(A=\frac{\sqrt{x}}{\left(\sqrt{x}-1\right)}\)
b)Khi \(x=\frac{9}{4}\)
\(\Rightarrow\frac{\sqrt{\frac{9}{4}}}{\sqrt{\frac{9}{4}}-1}=3\)
c)\(A=\frac{\sqrt{x}}{\left(\sqrt{x}-1\right)}< 1\)
\(\Leftrightarrow\sqrt{x}< \sqrt{x}-1\)(Voly)
=>ko có giá trị nào
\(A=\left(\frac{2+\sqrt{x}}{x-1}+\frac{2}{\sqrt{x}+1}\right)\div\frac{3}{x+\sqrt{x}}\)
a) ĐKXĐ : \(\hept{\begin{cases}x>0\\x\ne1\end{cases}}\)
\(=\left(\frac{2+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\frac{2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\div\frac{3}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
\(=\left(\frac{2+\sqrt{x}+2\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\div\frac{3}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
\(=\frac{3\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\times\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{3}\)
\(=\frac{x}{\sqrt{x}-1}\)
b) Xét biểu thức\(\frac{x}{\sqrt{x}-1}+4\left(\sqrt{x}-1\right)\)
Vì x > 1 nên áp dụng bất đẳng thức Cauchy ta có :
\(\frac{x}{\sqrt{x}-1}+4\left(\sqrt{x}-1\right)\ge2\sqrt{\frac{x}{\sqrt{x}-1}\cdot4\left(\sqrt{x}-1\right)}=2\sqrt{4x}=4\sqrt{x}\)
=> \(\frac{x}{\sqrt{x}-1}+4\left(\sqrt{x}-1\right)\ge4\sqrt{x}\)
=> \(\frac{x}{\sqrt{x}-1}+4\sqrt{x}-4\ge4\sqrt{x}\)
=> \(\frac{x}{\sqrt{x}-1}\ge4\)
Đẳng thức xảy ra khi x = 4 ( tm )
=> MinA = 4 <=> x = 4